Crops ›› 2020, Vol. 36 ›› Issue (5): 88-92.doi: 10.16035/j.issn.1001-7283.2020.05.013

Previous Articles     Next Articles

Genetic Analysis of Super Multiple Ear Row Number in DH Line 15D969 of Maize

Li Zhongnan1(), Wang Yueren2, Zhang Yanhui2, Wu Shenghui2, Qu Haitao2, Xu Zhengxue2, Li Guangfa2()   

  1. 1Jilin Agricultural Technology Extension Station, Changchun 130033, Jilin, China
    2Tonghua Academy of Agricultural Sciences of Jilin Province, Meihekou 135007, Jilin, China
  • Received:2020-02-23 Revised:2020-03-16 Online:2020-10-15 Published:2020-10-12
  • Contact: Li Guangfa E-mail:18741379479@163.com;lgftn666@sina.com

Abstract:

Two six-generation population of P1, P2, F1, B1, B2 and F2 were established using super multiple ear row number DH line 15D969 and low ear row number inbred lines of PH6WC and X901m were used as materials to analyze the inheritance of ear row number with major gene-polygene mixed inheritance model. The results showed that the average heterosis of F1 was -1.11%, which was a mixture model of two major genes additive-dominance-epitasis plus polygene additive-dominance. The heritability of major genes was 12.22%-96.37%, and the heritability of polygene was 0-61.16% in material I. The average heterosis of F1 was 1.16%, which was a mixture model of two major genes additive plus polygene additive-dominance. The heritability of major genes was 6.48%-54.18%, and the heritability of polygene was 4.77%-67.23% in material II. It was concluded that the ear row number was dominated by both major genes and polygene, and the super multiple ear row number in DH line 15D969 was controlled by incomplete dominant polygenes.

Key words: Maize, DH line, 15D969, Super multiple ear row number, Genetic analysis

Table 1

Germplasm origins and characteristics of ear row number of inbred lines or DH line"

自交系或DH系
Inbred line or DH line
种质
Germplasm
来源
Origin
穗行数Ear row number
平均值Mean 最大值Max 最小值Min
A6 美国杂交种×丹340 中国(自选) 22 26 20
PHB1M 兰卡斯特Lancaster 美国 16 18 14
15D969 A6×PHB1M 中国(自选) 26 32 20
PH6WC 瑞德Reid 美国 16 18 14
X901m 瑞德Reid 美国 14 16 12

Table 2

Statistical parameters of ear row number in the six generations of two materials"

世代
Generation
材料Ⅰ MaterialⅠ 材料Ⅱ MaterialⅡ
平均值
Mean
最大值
Max
最小值
Min
变异系数
CV (%)
平均值
Mean
最大值
Max
最小值
Min
变异系数
CV (%)
P1 16.00 20 12 9.34 14.73 18 12 8.41
P2 25.52 30 20 8.22 24.81 30 22 6.68
F1 20.53 24 18 7.47 20.00 24 16 9.13
B1 18.90 26 14 13.61 17.95 26 14 12.39
B2 23.26 28 18 9.82 22.60 28 18 9.66
F2 20.75 28 14 12.65 19.31 26 14 13.20

Table 3

The AIC value for ear row number of six generations of 24 genetic models from two materials"

模型
Model
AICAIC value 模型
Model
AICAIC value
材料ⅠMaterialⅠ 材料ⅡMaterialⅡ 材料ⅠMaterialⅠ 材料ⅡMaterialⅡ
1MG-AD 1 854.51 2 544.17 MX1-AD-ADI 1 843.45 2 443.65
1MG-A 1 853.01 2 542.19 MX1-AD-AD 1 840.41 2 448.56
1MG-EAD 1 999.86 2 691.00 MX1-A-AD 1 838.19 2 440.64
1MG-AEND 2 014.05 2 753.75 MX1-EAD-AD 1 838.29 2 444.37
2MG-ADI 1 838.41 2 491.12 MX1-AEND-AD 1 838.28 2 444.38
2MG-AD 1 843.92 2 503.65 MX2-ADI-ADI 1 850.85 2 454.89
2MG-A 1 830.68 2 482.99 MX2-ADI-AD 1 798.71 2 450.01
2MG-EA 1 828.28 2 481.16 MX2-AD-AD 1 844.29 2 450.37
2MG-AED 2 020.66 2 826.38 MX2-A-AD 1 839.18 2 439.70
2MG-EEAD 2 018.66 2 824.38 MX2-EA-AD 1 838.23 2 444.32
PG-ADI 1 849.93 2 456.95 MX2-AED-AD 1 840.30 2 446.35
PG-AD 1 836.91 2 443.72 MX2-EEAD-AD 1 838.30 2 444.35

Table 4

Test for goodness of optimal models"

模型
Model
群体
Population
统计量Statistic
U12 U22 U32 nW2 Dn
MX2-ADI-AD P1 0.0002(0.9887) 0.0546(0.8153) 0.9790(0.3224) 0.8095**(0.0070) 0.0190(1)
F1 0.2727(0.6015) 0.2999(0.5839) 0.0282(0.8665) 0.5307*(0.0338) 0.0134(1)
P2 0.2073(0.6489) 0.0827(0.7736) 0.3755(0.5400) 0.3697(0.0911) 0.0168(1)
B1 0.0315(0.8590) 0.0016(0.9684) 0.2801(0.5967) 0.4198(0.0664) 0.0103(1)
B2 0.1209(0.7281) 0.5339(0.4650) 2.4836(0.1150) 0.5207*(0.0359) 0.0112(1)
F2 0.0018(0.9658) 0.0016(0.9678) 0(0.9960) 0.5420*(0.0316) 0.0056(1)
MX2-A-AD P1 0.2416(0.6230) 0.1558(0.6930) 0.1055(0.7453) 1.3043**(0.0010) 0.0140(1)
F1 0.0435(0.8348) 0.0270(0.8694) 0.0225(0.8809) 0.9725**(0.0030) 0.0143(1)
P2 0.0067(0.9346) 0.0414(0.8388) 0.2460(0.6199) 0.5525*(0.0297) 0.0229(1)
B1 1.4687(0.2256) 0.0144(0.9044) 17.7519**(0) 1.1831**(0.0010) 0.0101(1)
B2 1.5324(0.2158) 0.0501(0.8229) 15.2043**(0) 1.0685**(0.0010) 0.0326(0.9999)
F2 0.4719(0.4921) 0.4347(0.5097) 0.0005(0.9813) 0.8668**(0.0050) 0.0043(1)

Table 5

Estimate values of the first order genetic parameters"

一阶参数
First order parameter
估计值 Estimate value 一阶参数
First order parameter
估计值 Estimate value
MX2-ADI-AD MX2-A-AD MX2-ADI-AD MX2-A-AD
m 20.12 19.55 i 0.73
da -0.06 -1.96 jab -1.73
db -0.06 1.55 jba 1.85
ha -0.52 l -2.53
hb 2.40 [d] -5.25 -5.55
ha/da 8.67 [h] 1.11 0.31
hb/db -40.00 [h]/[d] -0.21 -0.06

Table 6

Estimate values of the second order genetic parameters"

二阶参数
Second order parameter
估计值 Estimate value
MX2-ADI-AD MX2-A-AD
B1 B2 F2 B1 B2 F2
σp2 6.61 5.22 6.90 9.01 10.15 6.50
σmg2 0.81 5.03 3.36 0.96 0.66 3.52
σpg2 4.05 0.00 1.78 5.38 6.82 0.31
σ2 1.76 1.76 1.76 2.67 2.67 2.67
hmg2 (%) 12.22 96.37 48.71 10.66 6.48 54.18
hpg2 (%) 61.16 0.00 25.77 59.74 67.23 4.77
[1] Dhillon B S, Singh J. Estimation and inheritance of stability parameters of grain yield in maize. The Journal of Agricultural Science, 1977,88:257-265.
doi: 10.1017/S0021859600034754
[2] 张焕欣, 翁建峰, 张晓聪, 等. 玉米穗行数全基因组关联分析. 作物学报, 2014,40(1):1-6.
doi: 10.3724/SP.J.1006.2014.00001
[3] 刘磊. 玉米穗行数的遗传解析及主效QTLKRN4的克隆与功能分析. 武汉:华中农业大学, 2015.
[4] 白娜. 玉米穗行数多个QTL的定位与遗传解析. 北京:中国农业科学院作物科学研究所, 2016.
[5] 白胜双, 鹏勃, 王超楠. 玉米穗行数遗传基础的研究进展. 天津农业科学, 2016,22(5):8-10.
[6] 李忠南, 王越人, 邬生辉, 等. 玉米超多穗行数DH系15D969的发现. 中国种业, 2018(2):68-70.
[7] 李忠南, 王越人, 刘颖, 等. 艾东,玉米超多穗行数基因型15D969的单倍体育种效应. 中国种业, 2019(7):52-55.
[8] 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003.
[9] 李忠南, 王克伟, 王越人, 等. 玉米品种先玉335的血缘系谱及主要农艺性状遗传分析. 玉米科学, 2018,26(3):32-39.
[1] Yan Xiaoguang, Du Yanwei, Li Hong, Dong Hongfen, Li Aijun, Wang Guoliang, Zhou Nan. Error Analysis of Moisture Content in Maize Seeds by Quick Water-Content Measuring Method [J]. Crops, 2020, 36(5): 170-173.
[2] Wu Qiong, Ding Kaixin, Yu Minglong, Huang Wenting, Zuo Guanqiang, Feng Naijie, Zheng Dianfeng. Effects of New Plant Growth Regulator B2 on Photosynthetic Fluorescence Characteristics and Yield of Maize [J]. Crops, 2020, 36(5): 174-181.
[3] Guo Qi, Yu Mingyan, Ren Jun, Dai Yuxian, Li Shuhua, Liu Xiaodan, Xu Guoliang, Cai Zhuo. The Study of Novel Haploid Inducer with Yellow-Green Marker in Early Spontaneous Doubled Haploid Line Selection in Maize Breeding [J]. Crops, 2020, 36(5): 48-52.
[4] Wu Weihua, Liu Jiayou, Yuan Liuzheng, Yan Haixia, Fu Jiafeng, Wang Huiqiang, Wang Rui, Li Teng, Liu Kang. Effects of High Temperature Stress at Booting Stage on Maize Hybrids [J]. Crops, 2020, 36(5): 59-64.
[5] Wang Li, Wang Zuoping, Zhang Zhongbao, Bai Ling, Wu Zhongyi. Screening of Strongly Expressed Promoters in Immature Maize Kernels [J]. Crops, 2020, 36(4): 114-120.
[6] Li Qiang, Kong Fanlei, Yuan Jichao. Effects of Interannual Meteorological Factors on Maize Dry Matter Accumulation and Yield in the Hilly Area of Southwest China [J]. Crops, 2020, 36(4): 150-157.
[7] Zheng Fei, Wang Lixia, Liu Ruixiang, Kong Lingjie, Chen Yanping, Yuan Jianhua, Cui Yakun. Morphological and Physiological Differences of Maize Inbred Lines at Seedling Stage under Waterlogging Stress [J]. Crops, 2020, 36(4): 158-163.
[8] Yuan Wenya, Zhao Xiaolei, Zhou Xumei, Wang Lei, Peng Bo, Wang Yi. The Development of waxy Gene Function Marker and Its Application in Waxy Maize Breeding [J]. Crops, 2020, 36(4): 99-106.
[9] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
[10] Liu Jian, Sun Bin, Zhang Weiqiang, Feng Xiaoxi, Zhang Jiyang, Ning Dongfeng, Qin Anzhen, Liu Zhandong, Qiao Miao, Shen Hongli, Xu Yan. Effects of Chemical Regulating on Grain Harvest Quality and Water Use Efficiency in Summer Maize [J]. Crops, 2020, 36(3): 161-168.
[11] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[12] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[13] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[14] Zhang Xiaoyu,Zhang Yaling,Jin Xuehui,Yan Tianyu,Zhao Ze. Genetic Analysis of Pathogenicity of Sexual Progeny of Magnaporthe oryzae [J]. Crops, 2020, 36(2): 182-187.
[15] Wei Xiaoyi,Wang Jiamu,Ma Yi,Ma Junfeng,Hong Defeng,Wei Feng. Identification and Principal Component Analysis of Maize Combinations Suitable for Mechanical Grain Harvesting [J]. Crops, 2020, 36(2): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!