Crops ›› 2021, Vol. 37 ›› Issue (4): 10-17.doi: 10.16035/j.issn.1001-7283.2021.04.002

Previous Articles     Next Articles

Chromosomal Localization of Ribosomal DNA and Phylogenetic Analysis of 45S rDNA in Avena

Wang Bingce1(), Liu Xiaojuan1(), Cheng Bin2, Ren Mingjian1, Xu Ruhong1, Zhang Suqin1, Zhang Liyi2, He Fang1()   

  1. 1College of Agriculture, Guizhou University/Guizhou Subcenter of National Wheat Improvement Center, Guiyang 550025, Guizhou, China
    2Institute of Upland Crops, Guizhou Academy of Agriculture Sciences, Guiyang 550006, Guizhou, China
  • Received:2020-08-05 Revised:2021-04-25 Online:2021-08-15 Published:2021-08-13
  • Contact: He Fang E-mail:bingcew0721@163.com;lxj831508@163.com;fhe1@gzu.edu.cn

Abstract:

Due to the incomplete information on the diploid donor, the origin and phylogenetic relationship of oats have been controversial. The fluorescence in situ hybridization (FISH) method was used to detect the location information of 45S rDNA and 5S rDNA on the chromosomes of different ploidy plants of Avena. The molecular evolution tree was constructed based on the published full-length DNA sequence of the 45S rDNA ITS region. This paper discussed the locus changes, evolution laws, and differentiation mechanisms of 45S rDNA in different genomes of oats plants and provided references for exploring the origin and evolution of oat species.

Key words: Avena L., 45S rDNA, Fluorescence in situ hybridization, ITS

Fig.1

Mitotic chromosome in oat species a: A. ventricosa; b: A. strigosa; c: A. barbata; d: A. fatua var. portugal; e: A. fatua var. glabrata; f: A. sativa 16Co2"

Table 1

The information of signals of 45S rDNA and 5S rDNA in oat species"

物种
Species
基因组
Genome
染色体数目
Chromosome
number
位点
Signal
位点数目
Number of signals
信号分布区域
Signal region
信号强弱
Signal lightness
砂燕麦
A. strigosa
AsAs 2n=2x=14 45S 4 染色体端部 较强
5S 4 1对位于染色体端部,1对位于染色体中部 较弱
偏凸燕麦
A. ventricosa
CvCv 2n=2x=14 45S 6 2对位于染色体端部,1对位于染色体中部 较弱
5S 2 染色体中部 较弱
裂稃燕麦
A. barbata
AABB 2n=4x=28 45S 4 染色体端部 1强1弱
5S 6 1对位于染色体端部,2对位于染色体中部 较弱
葡萄牙野燕麦
A. fatua var. portugal
AACCDD 2n=6x=42 45S 6 染色体端部 较强
5S 6 2对位于染色体端部,1对位于染色体中部 较弱
光稃野燕麦
A. fatua var. glabrata
AACCDD 2n=6x=42 45S 6 染色体端部 较强
5S 6 2对位于染色体端部,1对位于染色体中部 较弱
栽培燕麦16Co1
A. sativa 16Co1
AACCDD 2n=6x=42 45S 6 染色体端部 较强
5S 6 2对位于染色体端部,1对位于染色体中部 较弱
栽培燕麦16Co2
A. sativa 16Co2
AACCDD 2n=6x=42 45S 6 染色体端部 较强
5S 6 2对位于染色体端部,1对位于染色体中部 较弱

Fig.2

45S rDNA and 5S rDNA FISH identification of mitotic chromosomes in oat species a: A. strigosa; b: A. ventricosa; c A. barbata; d: A. fatua var. glabrata; e: A. sativa (16Co1); f: A. sativa (16Co2)"

Table 2

Full length DNA sequence of 45S rDNA ITS region from published oat species"

物种Species 基因组Genome 染色体数目Chromosome number 序列数Sequence number 序列名Sequence name
加那利燕麦A. canariensis AcAc 2n=2x=14 5 can1 Ac-can5 Ac
大马士革燕麦A. damascena AdAd 2n=2x=14 9 dam1 Ad-dam9 Ad
长颖燕麦A. longiglumis AlAl 2n=2x=14 6 lon1 Al-lon6 Al
砂燕麦A. strigosa AsAs 2n=2x=14 3 str1 As-str3 As
沙漠燕麦A. wiestii AsAs 2n=2x=14 9 wie1 As-wie9 As
大西洋燕麦A. atlantica AsAs 2n=2x=14 6 atl1 As-atl6 As
A. hirtula AsAs 2n=2x=14 6 hir1 As-hir6 As
A. lusitanica AsAs 2n=2x=14 4 lus1 As-lus4 As
短燕麦A. brevis AsAs 2n=2x=14 3 bre1 nA-sbre3 As
A. hispanica AsAs 2n=2x=14 4 his1 As-his4 As
异颖燕麦A. eriantha CpCp 2n=2x=14 9 eri1 Cp-eri9 Cp
物种Species 基因组Genome 染色体数目Chromosome number 序列数Sequence number 序列名Sequence name
不完全燕麦A. clauda CpCp 2n=2x=14 9 cla1 Cp-cla9 Cp
A. pilosa CpCp 2n=2x=14 1 pil1 Cp
偏凸燕麦A. ventricosa CvCv 2n=2x=14 5 ven1 Cv-ven5 Cv
裂稃燕麦A. barbata AABB 2n=4x=28 16 bar1 AB-bar16 AB
阿比西尼亚燕麦A. abyssinica AABB 2n=4x=28 9 aby1 AB-aby9 AB
A. agadiriana AABB 2n=4x=28 7 aga1 AB-aga7 AB
瓦维洛夫燕麦A. vaviloviana AABB 2n=4x=28 7 vav1 AB-vav7 AB
岛屿燕麦A. insularis AACC 2n=4x=28 4 ins1 AC-ins4 AC
大燕麦A. maroccana AACC 2n=4x=28 9 mar1 AC-mar9 AC
墨菲燕麦A. murphyi AACC 2n=4x=28 6 mur1 AC-mur6 AC
大穗燕麦A. macrostachya CmCmCmCm 2n=4x=28 10 mac1 CmCm-mac10 CmCm
野燕麦A. fatua AACCDD 2n=6x=42 21 fat1 ACD-fat21 ACD
普通栽培燕麦A. sativa AACCDD 2n=6x=42 16 sat1 ACD-sat16 ACD
野红燕麦A. sterilis AACCDD 2n=6x=42 11 ste1 ACD-ste11 ACD
A. occidentalis AACCDD 2n=6x=42 12 occ1 ACD-occ12 ACD
大粒裸燕麦A. nuda AACCDD 2n=6x=42 6 nud1 ACD-nud6 ACD
地中海燕麦A. byzantina AACCDD 2n=6x=42 1 byz1 ACD

Fig.3

Construction of 45S rDNA sequence phylogenetic tree of oat species and wheat"

[1] 李威, 周青平. 六种裸燕麦品种种子萌发期抗旱性的研究. 草业与畜牧, 2008,5(9):5-8.
[2] 彭远英, 颜红海, 郭来春, 等. 燕麦属不同倍性种质资源抗旱性状评价及筛选. 生态学报, 2011,31(9):134-147.
[3] 李英丽, 方正, 毛明艳. 不同燕麦品种耐碱性筛选和鉴定. 河北农业大学学报, 2014,37(6):13-17.
[4] 董玉琛, 刘旭总. 中国作物及其野生近缘植物:粮食作物卷. 北京: 中国农业出版社, 2006.
[5] Drossou A, Katsiotis A, Leggett J M, et al. Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers. Theoretical and Applied Genetics, 2004,109(1):48-54.
[6] Badaeva E D, Loskutov I G, Shelukhina O Y, et al. Cytogenetic analysis of diploid Avena L. species containing the as genome. Russian Journal of Genetics, 2005,41(12):1428-1433.
[7] Rodionov A V, Tyupa N B, Kim E S, et al. Genomic configuration of the autotetraploid oat species avena macrostachya inferred from comparative analysis of ITS1 and ITS2 sequences:on the oat karyotype evolution during the early events of the Avena species divergence. Russian Journal of Genetics, 2005,41(5):518-528.
[8] Loskutov I G. On evolutionary pathways of Avena species. Genetic Resources and Crop Evolution, 2008,55(2):211-220.
[9] Nikoloudakis N, Skaracis G, Katsiotis A. Evolutionary insights inferred by molecular analysis of the ITS1-5.8S-ITS2 and IGS Avena sp. sequences. Molecular Phylogenetics and Evolution, 2008,46(1):102-115.
[10] 刘青, 刘欢, 林磊. 燕麦属系统学研究进展. 热带亚热带植物学报, 2014(5):516-524.
[11] 龚志云, 吴信淦, 程祝宽, 等. 水稻45S rDNA和5S rDNA的染色体定位研究. 遗传学报, 2002,29(3):241-244.
[12] Pontes O, Cotrim H, Pais S, et al. Physical mapping,expression patterns and interphase organisation of rDNA loci in Portuguese endemic Silene cintrana and Silene rothmaleri. Chromosome Research, 2000,8(4):313-317.
[13] Kato A, Lamb J C, Birchler J A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proceedings of the National Academy of Sciences, 2004,101(37):13554-13559.
[14] Mahelka V, Kopecký D, Baum B R. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Molecular Biology and Evolution, 2013,30(9):2065-2086.
[15] Clegg M T, Zurawski G. Chloroplast DNA and the study of plant phylogeny:present status and future prospects//Soltis P S,Soltis D E,Doyle J J. Molecular Systematics of Plants. Springer:Boston,MA, 1992.
[16] Peng Y Y, Wei Y M, Baum B R, et al. Molecular diversity of the 5S rRNA gene and genomic relationships in the genus Avena (Poaceae:Aveneae). Genome, 2008,51(2):137-154.
[17] Yan H H, Baum B R, Zhou P P, et al. Phylogenetic analysis of the genus Avena based on chloroplast intergenic spacer psb A-trn H and single-copy nuclear gene Acc1. Genome, 2014,57(5):267-277.
[18] Fu Y B. Oat evolution revealed in the maternal lineages of 25 Avena species. Scientific Reports, 2018,8(1):1-12.
[19] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X Windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997,25(24):4876-4882.
[20] Kumar S, Stecher G, Li M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018,35(6):1547-1549.
[21] Linc G, Gaál E, Molnár I, et al. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS ONE, 2017,12(3):e0173623.
[22] Mahelka V, Kopecký D, Baum B R. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Molecular Biology and Evolution, 2013,30(9):2065-2086.
[23] 赵筱芳. 冰草居群45S rDNA基因位点FISH分析. 成都:四川农业大学, 2016.
[24] Choi H W, Koo D H, Bang K H, et al. FISH and GISH analysis of the genomic relationships among Panax species. Genes and Genomics, 2009,31(1):99-105.
[25] 符文炎, 刘义飞, 黄宏文. 荧光原位杂交技术在植物多倍体起源与进化研究中的应用. 热带亚热带植物学报, 2014,22(3):314-322.
[26] Manns U, Anderberg A A. Molecular phylogeny of Anagallis (Myrsinaceae) based on ITS, trn L-F,and ndh F sequence data. International Journal of Plant Sciences, 2005,166(6):1019-1028.
[27] Gillespie L J, Soreng R J, Bull R D, et al. Phylogenetic relationships in subtribe Poinae (Poaceae,Poeae) based on nuclear ITS and plastid trn T-trn L-trn F sequences. Botany, 2008,86(8):938-967.
[28] Attar F, Riahi M, Daemi F, et al. Preliminary molecular phylogeny of Eurasian Scrophularia (Scrophulariaceae) based on DNA sequence data from trnS-trnG and ITS regions. Plant Biosystems, 2011,145(4):857-865.
[1] Zhu Xu, Hu Weili, Yang Houyong, Xu Yang, Xiang Zhen, Yang Ling, Yang Pengcheng. Analysis of Suitable Agronomic Traits for Mechanized Harvesting Mung Bean Varieties (Lines) in Nanyang Basin [J]. Crops, 2021, 37(4): 93-98.
[2] Qu Xiangchun, Wang Nai, Shi Guishan, Yu Miao, Li Haiqing, Gao Yue, Xu Ning, Chen Bingru. Application in Similarity-Difference Analysis Method on Evaluation of Grain Sorghum Hybrids [J]. Crops, 2021, 37(3): 46-50.
[3] Zhou Yuexia, Fan Yu, Ruan Jingjun, Yan Jun, Lai Dili, Peng Yan, Tang Yong, Weng Wenfeng, Cheng Jianping. Correlation Analysis of Oat Grain Nutrition and Agronomic Traits [J]. Crops, 2021, 37(2): 165-172.
[4] Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56.
[5] Wang Yujiao, Cao Qi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Shi Shubing. Effects of Chemical Regulation on Wheat Yield and Quality under Different Soil Conditions [J]. Crops, 2021, 37(2): 96-100.
[6] Duan Huimin, Lu Xiao, Zhou Xiaojie, Li Gaofeng, Wen Guohong, Wang Yuping, Cheng Lixiang, Zhang Feng. Effects of Potato Leaf Type and Planting Density on Yield Components [J]. Crops, 2021, 37(1): 160-167.
[7] Pan Xiaoxue, Hu Mingyu, Wang Zhongwei, Wu Hong, Lei Kairong. Evaluation of Agronomic Traits and Cold Tolerance at Germination Stage in Rice (Oryza sativa L.) Germplasms [J]. Crops, 2021, 37(1): 47-53.
[8] Yang Wanjun, Pan Xiangyu, Wang Xiuhua, Wang Lu, Zhao Yan. Genetic Diversity Analysis of Yield and Agronomic Traits of 119 Alfalfa Varieties (Lines) [J]. Crops, 2020, 36(6): 17-22.
[9] Yang Xuele, Zhang Lu, Li Zhiqing, He Luqiu. Diversity Analysis of Tartary Buckwheat Germplasms Based on Phenotypic Traits [J]. Crops, 2020, 36(5): 53-58.
[10] Chen Weiguo, Zhang Zheng, Shi Yugang, Cao Yaping, Wang Shuguang, Li Hong, Sun Daizhen. Drought-Tolerance Evaluation of 211 Wheat Germplasm Resources [J]. Crops, 2020, 36(4): 53-63.
[11] Zhao Yanhong,Hou Wenhuan,Liao Xiaofang,Tang Xingfu,Li Chuying. Effects of Different Sunshine Durations on Main Agronomic Traits of Roselle [J]. Crops, 2020, 36(2): 172-175.
[12] Chen Tianxin,Wang Yanjie,Zhang Yan,Chang Xuhong,Tao Zhiqiang,Wang Demei,Yang Yushuang,Zhu Yingjie,Liu Akang,Shi Shubing,Zhao Guangcai. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[13] Wang Heying,Guo Xiaohong,Zhang Qinming,Ma Yan,Li Meng,Jiang Hongfang,Hu Yue,Lan Yuchen,Xu Lingqi,Guo Hongtao,Lü Yandong. Effects of Sowing in Line under Water on Agronomic Characters and Yield Components of Rice in Cold Region [J]. Crops, 2020, 36(1): 81-88.
[14] Cao Tingjie,Zhang Yu’e,Hu Weiguo,Yang Jian,Zhao Hong,Wang Xicheng,Zhou Yanjie,Zhao Qunyou,Li Huiqun. Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits [J]. Crops, 2019, 35(6): 14-19.
[15] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area [J]. Crops, 2019, 35(6): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!