Crops ›› 2019, Vol. 35 ›› Issue (6): 14-19.doi: 10.16035/j.issn.1001-7283.2019.06.003

Previous Articles     Next Articles

Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits

Cao Tingjie1,Zhang Yu’e1,Hu Weiguo1,Yang Jian1,Zhao Hong1,Wang Xicheng1,Zhou Yanjie1,Zhao Qunyou2,Li Huiqun3   

  1. 1Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Seed Management Department of Nanyang, Nanyang 473000, Henan, China
    3Seed Management Department of Puyang, Puyang 457000, Henan, China
  • Received:2019-05-28 Revised:2019-08-21 Online:2019-12-15 Published:2019-12-11

Abstract:

In this study, Zhengmai 583 and 630 materials derived from variety comparison test and regional trials of Yellow-Huai wheat area and Henan Province at 2015-2016 were screened by specific molecular marker of wheat dwarf genes RhtB1-b, RhtD1-b and Rht8. The results showed that 549 wheat materials carried RhtB1-b gene; 592 wheat materials carried RhtD1-b gene; 513 wheat materials carried Rht8 gene; 422 materials carried all 3 dwarfing genes, and additional 169 lines carried 2 dwarfing genes which indicated that the 3 dwarf genes had been fixed in Henan wheat breeding progress. Moreover, Rht8 showed significantly correlation with reducing plant height, spike number per hectare and increasing 1000-kernel weight. Zhengmai 583 carried 3 dwarf genes, showed excellent fertility. The selection and utilization of dwarf genes are of certain value for the cultivation of wheat varieties with high yield.

Key words: Wheat, Plant height, Dwarfing gene, Agronomic traits

Table 1

Molecular markers for detection of RhtB1-b、RhtD1-b and Rht8"

检测基因名称
ID of detection gene
正向引物序列(5′-3′)
Sequence of forward primer (5′-3′)
反向引物序列(5′-3′)
Sequence of reverse primer (5′-3′)
退火温度(℃)
Annealing temperature
RhtB1-b TCTCCTCCCTCCCCACCCAAC CATCCCCATGGCCATCTCGAGCTA 63
RhtD1-b CGCGCAATTATTGGCCAGAGATAG CCCCATGGCCATCTCGAGCTGCTA 63
Rht8 CTCCCTGTACGCCTAAGGC CTCGCGCTACTAGCCATTG 55

Fig.1

Amplification results of RhtB1-b (a) and RhtD1-b (b) primers in some tested cultivars (lines) M. Marker; 1. Norin 10; 2. Zhengmai 583; 3. Shengmai 197; 4. Xinliang 3; 5. Guangtai 68; 6. Xumai 0054; 7. Quanmai 890; 8. Xinong 501. The same below"

Fig.2

PCR amplification result of 4 varieties of Rht8 in test cultivars (lines) 9. Fengdecunmai 12; 10. Longke 1221. a. 192bp; b. 202bp; c. 165bp; d. 174bp"

Fig.3

Distribution frequency of RhtB1-b, RhtD1-b and Rht8 haplotypes in 631 wheat cultivars (lines)"

Table 2

Descriptive statistics of agronomic traits in 631 wheat cultivars (lines)"

性状Trait 最小值
Minimum
最大值
Maximum
平均值
Mean
标准差
Standard deviation
变异系数(%)
Coefficient of variation
株高Plant height (cm) 59.30 91.00 76.99 4.51 0.06
每公顷穗数Spike number per hectare (×106) 3.80 6.63 5.57 0.45 0.08
千粒重1000-kernel weight(g) 37.00 53.40 45.00 2.71 0.06
穗粒数Kernel number per spike 29.10 43.80 34.80 2.19 0.06

Fig.4

Scatter plot matrix of 4 agronomic traits Histogram represents the frequency distribution of 4 traits; Lower left quarter plot elements display the pairwise two-dimensional scatter plot (the straight fitting line); Upper right corner display the pairwise correlation coefficient ("*" P<0.05)"

Table 3

Effects of Rht8 on 4 agronomic traits"

性状
Trait
位点
Locus
样本容量
Sample size
平均数
Mean
标准差
Standard error
最小值
Minimum
最大值
Maximum
F 显著性
Significance
株高Plant height (cm) Rht8(+) 513 76.70 4.44 59.30 89.00 11.53 0.001**
Rht8(-) 117 78.26 4.61 63.90 91.00
每公顷穗数Spike number per hectare (×106) Rht8(+) 513 5.54 0.36 3.80 6.63 10.12 0.002**
Rht8(-) 117 5.66 0.48 4.40 6.63
千粒重1000-kernel weight (g) Rht8(+) 513 45.10 2.66 37.80 53.40 4.08 0.044*
Rht8(-) 117 44.54 2.90 37.00 50.90
穗粒数Kernel number per spike Rht8(+) 513 34.93 2.58 29.10 43.80 15.19 0.000**
Rht8(-) 117 34.06 2.41 29.40 40.61
[1] Trewavas A J . The population/biodiversity paradox. agricultural efficiency to save wilderness. Plant Physiology, 2001,125(1):174-179.
doi: 10.1104/pp.125.1.174 pmid: 11154326
[2] Tian X, Wen W, Xie L , et al. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Frontiers in Plant Science, 2017,8:1379.
doi: 10.3389/fpls.2017.01379 pmid: 28848582
[3] Zhao K, Xiao J, Liu Y , et al. Rht23 (5Dq') likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theoretical and Applied Genetics, 2018,131(9):1825-1834.
doi: 10.1007/s00122-018-3115-5 pmid: 29855673
[4] Mo Y, Vanzetti L S, Hale I , et al. Identification and characterization of Rht25,a locus on chromosome arm 6AS affecting wheat plant height,heading time,and spike development. Theoretical and Applied Genetics, 2018,131(10):2021-2035.
doi: 10.1007/s00122-018-3130-6 pmid: 29959472
[5] Chen L, Du Y, Lu Q , et al. The Photoperiod-insensitive allele Ppd-D1a promotes earlier flowering in Rht12 dwarf plants of bread wheat. Frontiers in Plant Science, 2018,9:1312.
doi: 10.3389/fpls.2018.01312 pmid: 30405643
[6] Ellis M H, Bonnett D G, Rebetzke G J . A 192bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 2007,157(1):209-214.
doi: 10.1007/s10681-007-9413-7
[7] Peng J, Richards D E, Hartley N M , et al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999,400(6741):256-261.
doi: 10.1038/22307 pmid: 10421366
[8] Pearce S, Saville R, Vaughan S P , et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiology, 2011,157(4):1820-1831.
doi: 10.1104/pp.111.183657
[9] Korzun V, Röder M S, Ganal M W , et al. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1998,96(8):1104-1109.
doi: 10.1007/s001220050845
[10] Rebetzke G J, Richards R A . Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Australian Journal of Agricultural Research, 2000,51(2):235-246.
doi: 10.1071/AR99043
[11] Grover G, Sharma A, Gill H S , et al. Rht8 gene as an alternate dwarfing gene in elite Indian spring wheat cultivars. PLoS ONE, 2018,13(6):e0199330.
doi: 10.1371/journal.pone.0199330 pmid: 29927977
[12] Ellis M, Spielmeyer W, Gale K , et al. "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002,105(6):1038-1042.
doi: 10.1007/s00122-002-1048-4 pmid: 12582931
[13] 孙树贵, 李艳丽, 鲁敏 , 等. 67份美国小麦品种矮秆基因的分子标记检测. 麦类作物学报, 2013,33(6):1087-1092.
doi: 10.7606/j.issn.1009-1041.2013.06.004
[14] Guedira M, Brown-Guedira G, Sanford D V , et al. Distribution of Rht genes in modern and historic winter wheat cultivars from the eastern and central USA. Crop Science, 2010,50(5):1811-1822.
doi: 10.2135/cropsci2009.10.0626
[15] Ganeva G, Korzun V, Landjeva S , et al. Identification,distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica, 2005,145(3):305-315.
doi: 10.1007/s10681-005-1742-9
[16] Knopf C, Becker H, Ebmeyer E , et al. Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cereal Research Communications, 2008,36(4):553-560.
doi: 10.1556/CRC.36.2008.4.4
[17] Zhang X, Yang S, Zhou Y , et al. Distribution of the Rht-B1b,Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica, 2006,152(1):109-116.
doi: 10.1007/s10681-006-9184-6
[18] Mu M, Liu Y, Guo X , et al. Distribution of Rht-Blb and Rht-Dlb in wheat cultivars in Shandong detected by molecular markers. Molecular Plant Breeding, 2005,3(4):473-478.
doi: 10.1007/s001220051259 pmid: 22665180
[19] 周晓变, 赵磊, 陈建辉 , 等. 黄淮麦区小麦种质资源矮秆基因分布及其与农艺性状的关系. 麦类作物学报, 2017,37(8):997-1007.
[20] 周强, 袁中伟, 欧俊梅 , 等. 四川小麦主要矮秆基因的分子鉴定. 麦类作物学报, 2015,35(12):1624-1630.
[21] 王玉叶, 张海萍, 来得娥 , 等. 257份小麦品种资源中矮秆基因的分子检测. 安徽农业大学学报, 2013,40(5):860-866.
[22] 张德强, 宋晓朋, 冯洁 , 等. 黄淮麦区小麦品种矮秆基因Rht-B1b、Rht-D1b和Rht8的检测及其对农艺性状的影响. 麦类作物学报, 2016,36(8):975-981.
[23] Ellis M H, Rebetzke G J, Azanza F , et al. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theoretical and Applied Genetics, 2005,111(3):423-430.
doi: 10.1007/s00122-005-2008-6
[24] Botwright T L, Rebetzke G J, Condon A G , et al. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Annals of Botany, 2005,95(4):631-639.
doi: 10.1093/aob/mci069 pmid: 15655105
[25] 李杏普, 兰素缺, 冯延茹 . Rht-B1b,Rht-D1b,Rht-B1c小麦矮秆基因及其互作对小麦农艺性状的影响. 河北农业科学,2006(1):14-18.
[26] Du Y, Chen L, Wang Y , et al. The combination of dwarfing genes Rht4 and Rht8 reduced plant height,improved yield traits of rainfed bread wheat (Triticum aestivum L.). Field Crops Research, 2018,215:149-155.
doi: 10.1016/j.fcr.2017.10.015
[27] Wang Y, Du Y, Yang Z , et al. Comparing the effects of GA-responsive dwarfing genes Rht13 and Rht8 on plant height and some agronomic traits in common wheat. Field Crops Research, 2015,179:35-43.
doi: 10.1016/j.fcr.2015.04.010
[28] Zhang K, Wang J, Qin H , et al. Assessment of the individual and combined effects of Rht8 and Ppd-D1a on plant height,time to heading and yield traits in common wheat. The Crop Journal, 2019.
doi: 10.1080/00028899908984503 pmid: 10635545
[29] Jobson E M, Martin J M, Schneider T M , et al. The impact of the Rht-B1b,Rht-D1b,and Rht-8 wheat semi-dwarfing genes on flour milling,baking,and micronutrients. Cereal Chemistry, 2018,95(6):770-778.
doi: 10.1002/cche.2018.95.issue-6
[1] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area [J]. Crops, 2019, 35(6): 20-26.
[2] Yang Tian,Zhang Yongqing,Dong Fuhui,Ma Xingxing,Xue Xiaojiao. Research on the Root Growth of Different Drought-Resistant Fagopyrum tataricum under Different Water Conditions [J]. Crops, 2019, 35(6): 76-82.
[3] Guo Mingming,Fan Jiwei,Wang Kangjun,Sun Zhongwei,Zhang Guangxu,Chen Feng,Li Qiang,Li Jun,Zhang Yueshu,Zhao Guangcai. Difference of Grain Quality of Three Wheat Varieties (Lines) in Tidal Saline Soil [J]. Crops, 2019, 35(6): 134-139.
[4] Cao Lixia,Zhao Shifeng,Zhou Haitao,Zhang Xinjun,Shi Bihong,Liu Junxin,Li Yunxia,Li Tianliang. Analysis of Suitable Sowing Date for Buckwheat Varieties in Bashang Area of Northern Hebei [J]. Crops, 2019, 35(6): 145-149.
[5] Wang Lina,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. The Effects of Topdressing Boron Fertilizer on the Yield and Quality of Wheat under Different Soil Conditions [J]. Crops, 2019, 35(6): 94-98.
[6] Li Hu,Chen Chuanhua,Liu Guanglin,Wu Zishuai,Huang Qiuyao,Luo Qunchang. Effects of Nitrogen Fertilizer Application Rate and Planting Density on Agronomic Traits and Yield of Guiyu 9 [J]. Crops, 2019, 35(6): 99-103.
[7] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province [J]. Crops, 2019, 35(5): 104-108.
[8] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions [J]. Crops, 2019, 35(5): 109-113.
[9] Li Chunxi,Li Sisi,Shao Yun,Ma Shouchen,Liu Qing,Weng Zhengpeng,Li Xiaobo. Effects of Organic Materials Returning on Enzyme Activities and Soil Carbon and Nitrogen Content in Wheat Field under Nitrogen-Reducing Conditions [J]. Crops, 2019, 35(5): 129-134.
[10] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain [J]. Crops, 2019, 35(5): 143-150.
[11] Jiang Lina,Zhang Yawen,Zhu Yalin,Zhao Lingxiao. Effects of Nitrogen Application on Dry Matter Accumulation, Transport and Yield in Different Wheat Varieties [J]. Crops, 2019, 35(5): 151-158.
[12] Ma Yifeng,Liang Qian,Ge Junzhu,Xin Decai. Comparison of Yield Formation Between Winter Wheat Jimai 22 and Spring Wheat Jinqiang 8 [J]. Crops, 2019, 35(5): 192-195.
[13] Liu Xingye,Xing Baolong,Wu Ruixiang,Wang Guimei,Liu Fei. Main Agronomic Traits Variation and Its Effects on Yield Composition of Mung Bean in Northern Shanxi Province [J]. Crops, 2019, 35(5): 69-75.
[14] Li Jing,Nan Ming. Analysis of Agronomic Characters and Genetic Diversity of 62 Winter Wheat Germplasms from Russia and Ukraine in Northwest China [J]. Crops, 2019, 35(5): 9-14.
[15] Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Variation Analysis of Agronomic Traits of Waxy Sorghum Varieties (Lines) in Different Eras in Guizhou Province [J]. Crops, 2019, 35(4): 17-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[3] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[5] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[6] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[7] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[8] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[9] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .
[10] Li Hongtao,Xu Hanyuan,Li Jingfang,Zhu Qing,Chi Ming,Wang Jun. Analysis of Gene Effect on Chlorophyll Content in Maize[J]. Crops, 2019, 35(5): 46 -51 .