Crops ›› 2021, Vol. 37 ›› Issue (1): 47-53.doi: 10.16035/j.issn.1001-7283.2021.01.007

Previous Articles     Next Articles

Evaluation of Agronomic Traits and Cold Tolerance at Germination Stage in Rice (Oryza sativa L.) Germplasms

Pan Xiaoxue(), Hu Mingyu, Wang Zhongwei, Wu Hong, Lei Kairong()   

  1. Biotechnology Research Center, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture Research, Chongqing 401329, China
  • Received:2020-05-22 Revised:2020-12-25 Online:2021-02-15 Published:2021-02-23
  • Contact: Lei Kairong E-mail:xiaoxuepan@126.com;leikairong@126.com

Abstract:

The 12 agronomic traits of 106 rice cultivars collected from Chongqing were identified via a two-year field trial (2018-2019), the traits and genetic diversity indexes differences between different rice varieties were compared and analyzed; germination rate was used to comprehensively evaluate the cold tolerance of rice at germination stage. The results showed that the variation range of genetic diversity index of nine traits less than 2.00 among 12 agronomic traits except 1000-grain weight, stalk diameter and grain number per panicle; the variation coefficient of the dry weight of ears per plant, grain number per panicle and filled grain number per panicle were 22.08%, 21.89% and 22.25%, respectively, while the grain width was the lowest (7.90%). Twenty-three specific varieties were screened, containing nine large-ear varieties, four high dry weight of ears per plant varieties and ten grain slenderness varieties. Through cluster analysis, 106 rice germplasm were divided into three groups, accounting for 15.1% (groupⅠ), 47.2% (groupⅡ), and 37.7% (groupⅢ), respectively. The results of principal component analysis showed that total contribution rate of the first five main component factors (PC1-PC5) including 12 agronomic traits with accumulative contribution of 84.19%. An objective comprehensive evaluation value (D-value) of rice agronomic traits was obtained using membership function with index weight method. The top ten of the D-value of germplasm resources were 77D, Wanhui355-2, Yihui1577, Nanhui533, 176-15, Feng788, Wanhui86, Yangfu6, Shuhui527 and 176-6. There were significant differences in germination rate among different rice germplasms, and four germplasms including 176-6, 176-15, Gui 99, and glutinous Rice 89-1 were selected with high germination rate under low temperature. These germplasms with cold-tolerance and better comprehensive traits can be used for breeding in direct seeding rice.

Key words: Rice, Germplasm resources, Agronomic traits, Cold-tolerance at germination stage, Comprehensive assessment

Table 1

Names of Chongqing rice germplasms and their D-values, comprehensive rankings and cold resistance levels"

编号
No.
名称
Name
D
D-value
排名
Ranking
耐寒等级
Level
编号
No.
名称
Name
D
D-value
排名
Ranking
耐寒等级
Level
1 中413 0.460 55 9 54 早黄矮 0.436 69 9
2 湘恢6号 0.458 57 9 55 万恢481 0.446 64 9
3 湘恢15号 0.341 94 9 56 半边粘 0.383 89 9
4 湘恢27号 0.446 65 9 57 蜀恢527 0.505 28 9
5 湘恢12号 0.502 29 9 58 乐软101 0.619 16 9
6 蜀恢162 0.478 44 9 59 丰恢99 0.564 20 9
7 泸恢17 0.508 26 9 60 成恢448 0.513 21 9
8 杨福6号 0.724 8 9 61 丰恢89 0.627 12 9
9 江恢151 0.566 19 9 62 成恢425 0.626 13 9
10 蜀恢527 0.711 9 9 63 宜恢1313 0.497 35 9
11 绵恢725 0.468 51 9 64 内香恢2号 0.432 72 9
12 黔恢15 0.501 31 9 65 乐恢213 0.620 15 9
13 N69-1 0.465 52 9 66 川恢934 0.455 59 9
14 44C 0.513 22 9 67 蜀362 0.468 50 9
15 44C-1 0.494 37 9 68 宜恢3511 0.506 27 9
16 44D 0.319 97 9 69 成恢447 0.417 78 9
17 宜恢1577 0.759 3 9 70 南恢533 0.751 4 9
18 明恢63 0.440 67 9 71 万恢646 0.457 58 9
19 鸭棚子 0.410 80 9 72 万恢19 0.419 76 9
20 CDR22 0.473 47 9 73 万恢2号 0.568 18 9
21 黄鞭粘 0.452 61 9 74 万恢481 0.423 75 9
22 中香1号 0.383 88 9 75 科恢675 0.458 56 9
23 乐恢188 0.435 70 9 76 RO7 0.460 54 9
24 丝苗香 0.177 105 9 77 R26 0.477 45 9
25 中优368 0.404 83 9 78 R10 0.428 73 9
26 44D 0.346 92 9 79 科恢21 0.494 38 9
27 44D-2 0.453 60 9 80 科恢28 0.433 71 9
28 汕B 0.497 36 9 81 科恢2 0.399 84 9
29 N69-2 0.343 93 9 82 科恢10 0.500 32 9
30 N69-3 0.264 101 9 83 科恢58 0.488 41 9
31 N69-4 0.464 53 5 84 科恢39 0.474 46 9
32 宜香B 0.409 82 9 85 科恢198 0.500 33 9
33 巴西陆稻 0.320 96 9 86 万恢86 0.725 7 9
34 CDR22异 0.471 48 9 87 Q2 0.468 49 9
35 MY-1 0.489 40 5 88 糯稻89-1 0.374 90 1
36 MY-2 0.568 17 9 89 176-12 0.481 43 9
37 MY-3 0.395 87 5 90 176-14 0.445 66 5
38 阳尘糯 0.362 91 9 91 176-15 0.747 5 1
39 77D 0.796 1 9 92 176-16 0.334 95 5
40 川丰6号 0.483 42 9 93 176-18 0.409 81 9
41 丰788 0.725 6 9 94 176-2 0.426 74 9
42 金麻粘 0.397 85 9 95 176-6 0.678 10 1
43 桂99 0.510 25 1 96 176-7 0.512 23 9
44 万恢35 0.493 39 9 97 176-8 0.414 79 9
45 万恢35-1 0.499 34 9 98 176-9 0.510 24 9
46 万恢910 0.502 30 9 99 537-12 0.133 106 9
47 万恢35-2 0.448 63 9 100 537-14 0.242 102 9
48 万恢355-2 0.759 2 9 101 R337 0.230 103 5
49 万恢88 0.438 68 9 102 中花11 0.287 98 9
50 涪引1号 0.624 14 9 103 黄华占 0.268 100 9
51 奇妙香 0.395 86 9 104 科恢675-1 0.418 77 9
52 十里香 0.450 62 9 105 丽江 0.229 104 9
53 乌节黄谷 0.627 11 9 106 杨粳4227 0.283 99 9

Table 2

Evaluation on agronomic traits of rice collected from Chongqing in 2018 and 2019"

性状
Trait
均值
Average
最小值
Minimum
最大值
Maximum
标准差
Standard deviation
变异系数
Variation coefficient (%)
多样性指数
Diversity index
株高Plant height (cm) 115.43 79.53 174.74 16.86 14.61 1.67
穗长Panicle length (cm) 27.98 19.51 40.16 3.07 10.97 1.90
有效穗数The effective panicles per plant 11.74 8.01 17.60 1.80 15.31 1.92
单株产量Grain weight per plant (g) 37.36 11.29 58.41 8.25 22.08 1.94
千粒重1000-grain weight (g) 25.83 17.50 32.11 2.81 10.89 2.02
茎粗Stalk diameter (cm) 6.73 5.36 8.38 0.61 9.10 2.06
每穗总粒数Grain number per panicle 194.54 105.70 359.30 42.58 21.89 2.01
每穗实粒数Filled grain number per panicle 163.31 84.50 325.90 36.34 22.25 1.90
结实率Seed setting rate (%) 0.84 0.62 0.96 0.08 9.74 1.90
谷粒长Grain length (mm) 94.49 68.80 111.00 8.46 8.96 1.90
谷粒宽Grain width (mm) 31.12 25.90 39.60 2.50 7.90 1.91
谷粒长宽比Grain length/Grain width 3.07 1.80 3.80 0.40 13.01 1.85

Table 3

Special germplasm resources of rice collected from Chongqing"

特异资源特征Special germplasm character 品种编号(测定值)Variety number (measured value)
大穗(每穗总粒数>250)
Large-ear (Grain number per panicle > 250)
48(359.3),39(315.5),17(303.4),22(279.1),87(270),16(267.9),66(262.0),14(261.2),70(250.6)
高单株产量(单株产量>50g)
High dry weight of ears per plant (Dry weight of ears per plant > 50g)
30(58.41g),63(58.18g),41(54.98g),50(50.87g)
籽粒细长(籽粒长宽比>3.5)
Grain slenderness (Grain length/Grain width > 3.5)
35(3.80),88(3.68),86(3.64),101(3.62),59(3.60),98(3.58),14(3.56),15(3.56),17(3.53),79(3.50)

Table 4

Correlation coefficients of 12 quantitative traits"

指标Index X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
X1 -1.000
X2 -0.606** -1.000
X3 -0.385** -0.175* -1.000
X4 -0.008 -0.248** -0.268** 1.000
X5 -0.070 -0.229* -0.111 0.253** -1.000
X6 -0.319** -0.259** -0.510** 0.111 -0.175* -1.000
X7 -0.109 -0.273** -0.391** 0.108 -0.144 -0.537** -1.000
X8 -0.038 -0.231* -0.335** 0.209* -0.068 -0.519** -0.912** -1.000
X9 -0.321** -0.042 -0.099 0.304** -0.242** -0.007 -0.132 -0.275** -1.000
X10 -0.211* -0.372** -0.054 0.199 -0.513** -0.196* -0.024 -0.071 -0.185* -1.000
X11 -0.111 -0.297** -0.002 0.140 -0.225* -0.094 -0.135 -0.011 -0.346** -0.367** -1.000
X12 -0.183* -0.387** -0.037 0.035 -0.185 -0.055 -0.080 -0.064 -0.344** -0.844** -0.797** 1.000

Table 5

Eigen values and proportion of comprehensive indexes"

主成分
Principal
component
特征值
Eigen
value
贡献率
Contribution
rate (%)
累计贡献率
Cumulative contribution
rate (%)
PC1 3.25 27.10 27.10
PC2 2.54 21.17 48.27
PC3 1.87 15.54 63.81
PC4 1.40 11.71 75.51
PC5 1.04 8.67 84.19

Table 6

Loading matrix of each component"

主成分Principal component X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
PC1 0.563 0.711 -0.480 0.150 0.252 0.593 0.586 0.443 -0.284 0.656 -0.492 0.685
PC2 -0.063 -0.049 -0.391 0.143 -0.093 0.529 0.624 0.769 0.404 -0.499 0.525 -0.635
PC3 -0.100 0.198 0.268 0.682 0.753 0.042 -0.261 -0.035 0.603 0.373 0.372 0.007
PC4 -0.585 -0.101 0.460 0.321 -0.310 -0.207 0.340 0.418 0.181 0.051 -0.442 0.278
PC5 0.491 0.493 0.342 0.399 -0.353 -0.179 -0.017 -0.043 -0.052 -0.289 -0.012 -0.189

Fig.1

Cluster analysis for rice germplasms collected from Chongqing based on agronomic traits"

[1] 魏兴华. 我国水稻品种资源研究进展与展望. 中国稻米, 2019,25(5):8-11.
[2] 朱文东. 引进日本优质水稻品种农艺性状综合评价. 江苏农业科学, 2009(1):66-69.
[3] 熊玉珍, 陈凡玉, 邱兵余, 等. 江西水稻地方品种资源综合评价. 江西农业学报, 2008,20(1):5-7.
[4] 肖佳雷, 辛爱华, 张国民, 等. 黑龙江省水稻种质资源农艺性状鉴定与筛选. 中国农学通报, 2010,26(1):260-263.
[5] 胡标林, 万勇, 李霞, 等. 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012,38(5):829-839.
doi: 10.3724/SP.J.1006.2012.00829
[6] Baruah A R, Ishigo-Oka N, Adachi M, et al. Cold tolerance at the early growth stage in wild and cultivated rice. Euphytica, 2009,165(3):459-470.
doi: 10.1007/s10681-008-9753-y
[7] 陈亮, 楼巧君, 孙宗修, 等. 水稻低温发芽力的QTL定位. 中国水稻科学, 2006,20(2):159-164.
[8] 周勇, 朱孝波, 袁华, 等. 水稻单片段代换系芽期和苗期耐冷性分析及耐冷性QTL鉴定. 中国水稻科学, 2013,27(4):381-388.
doi: 10.3969/j.issn.1001-7216.2013.04.007
[9] 巩迎军, 阮雯君, 荀星, 等. 水稻芽性状耐冷性的QTL分析. 分子植物育种, 2009,7(2):273-278.
[10] 国家质量技术监督局. 植物新品种特异性、一致性和稳定性测试指南:水稻. 北京: 中国农业出版社, 2013.
[11] 韩龙植, 魏兴华. 水稻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
[12] 戴海芳, 武辉, 阿曼古丽·买买提阿力, 等. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014,47(7):1290-1300.
doi: 10.3864/j.issn.0578-1752.2014.07.005
[13] 王丽艳, 唐金敏, 郑桂萍, 等. 水稻萌发期和幼苗期耐低温指标体系构建及综合评价. 中国农业科技导报, 2019,21(10):58-65.
[14] 董昕, 官玲, 杨华, 等. 重庆地区玉米地方品种农艺性状与品质性状综合评价. 南方农业学报, 2019,50(5):932-941.
[15] 田蕾, 陈亚萍, 刘俊, 等. 粳稻种质资源芽期耐盐性综合评价与筛选. 中国水稻科学, 2017,31(6):631-642.
[16] Li X B, Yan W G, Agrama H, et al. Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection. Genetica, 2010,138(11/12):1221-1230.
doi: 10.1007/s10709-010-9521-5
[17] Jin L, Lu Y, Xiao P, et al. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theoretical and Applied Genetics, 2010,121(3):475-487.
doi: 10.1007/s00122-010-1324-7 pmid: 20364375
[18] Wang C H, Zheng X M, Xu Q, et al. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm. Heredity, 2014,112(5):489-496.
pmid: 24326293
[19] 赵璐, 杨治伟, 部丽群, 等. 宁夏和新疆水稻种质资源表型遗传多样性分析及综合评价. 作物杂志, 2018(1):25-34.
[20] 张银平, 杜瑞成, 刁培松, 等. 山东省水稻免耕旱直播试验及可行性分析. 农业工程学报, 2016,32(12):24-30.
[21] Brandolini A, Landi P, Monfredini G, et al. Variation among Andean races of maize for cold tolerance during heterotrophic and early autotrophic growth. Euphytica, 2000,111(1):33-41.
doi: 10.1023/A:1003710431416
[22] Fujino K, Sekiguchi H, Sato T, et al. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2004,108(5):794-799.
doi: 10.1007/s00122-003-1509-4 pmid: 14624339
[23] 李霞, 戴传超, 程睿, 等. 不同生育期水稻耐冷性的鉴定及耐冷性差异的生理机制. 作物学报, 2006,32(1):76-83.
[24] 郭涛, 王海凤, 薛芳, 等. 耐低温发芽水稻种质资源筛选. 山东农业科学, 2020,52(1):37-41.
[25] 赵正武, 李仕贵, 雷树凡. 糯稻89-1越冬性遗传研究. 中国农业科学, 2006,39(12):2399-2405.
[26] 王春萍, 雷开荣, 李正国, 等. 低温胁迫对水稻幼苗不同叶龄叶片叶绿素荧光特性的影响. 植物资源与环境学报, 2012,21(3):38-43.
[27] 潘晓雪, 胡明瑜, 白文钦, 等. 糯稻89-1渗入系苗期耐寒鉴定及生理机制初步分析. 分子植物育种, 2016,14(10):2798-2802.
[1] Liu Ping, Shao Caihong, Zhang Honglin, Liu Guangrong. Effects of Dry-Wet Alternate Irrigation on Double Cropping Rice Yield and Quality during Late Development Stage under Seasonal Rain Condition [J]. Crops, 2021, 37(2): 153-159.
[2] Zhou Yuexia, Fan Yu, Ruan Jingjun, Yan Jun, Lai Dili, Peng Yan, Tang Yong, Weng Wenfeng, Cheng Jianping. Correlation Analysis of Oat Grain Nutrition and Agronomic Traits [J]. Crops, 2021, 37(2): 165-172.
[3] Xing Yuan, He Zhonghua. Analysis of Characteristics of Rice Drought in Guizhou Province Based on Water Deficit Index [J]. Crops, 2021, 37(2): 191-199.
[4] Zhao Kaocheng, Ma Jun, Ye Ying, Huang Lifen, Zhuang Hengyang. Research Advance on the Comprehensive Effects of Ecological Farming of Rice and Shrimp [J]. Crops, 2021, 37(2): 22-27.
[5] Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56.
[6] Yang Yuchen, Du Zhimin, Zhang Xiaopeng, Li Kunyi, Shen Jiaqi, Xu Hai. Effects of Spraying Methyl Jasmonate on Yield and Grain Quality of Japonica Rice during Heading and Flowering Stage [J]. Crops, 2021, 37(2): 71-76.
[7] Fu Jing, Yin Haiqing, Wang Ya, Yang Wenbo, Zhang Zhen, Bai Tao, Wang Yuetao, Wang Fuhua, Wang Shengxuan. Effects of Nitrogen Topdressing Models on Root Growth and Grain Yield of Japonica Rice in the Region along Yellow River of Henan Province [J]. Crops, 2021, 37(2): 77-86.
[8] Wang Yujiao, Cao Qi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Shi Shubing. Effects of Chemical Regulation on Wheat Yield and Quality under Different Soil Conditions [J]. Crops, 2021, 37(2): 96-100.
[9] Zhou Jiang, Xie Yizhang, Xiang Ping'an. Emergy Analysis of Inputs and Outputs of Major Field Crop Ecosystems in Hunan Province [J]. Crops, 2021, 37(1): 175-181.
[10] Gong Songling, Cao Pei, Gao Zhenzhen, Li Chengwei, Liu Zhangyong, Zhu Bo. Effects of Cropping Patterns on Crop Yield and Resource Utilization Efficiency in Southern China [J]. Crops, 2021, 37(1): 68-73.
[11] Lü Weisheng, Xiao Xiaojun, Huang Tianbao, Xiao Guobin, Li Yazhen, Xiao Fuliang, Han Depeng, Zheng Wei. Application Effect of Slow-Released Formulated Fertilizer on Oilseed Rape (Brassica napus L.) under Late Sowing Rice [J]. Crops, 2020, 36(6): 143-150.
[12] Fu Xuepeng, Shen Tongfei, Sun Xiaobo, Liu Xiaohan, Yang Xiaojie. Effects of Streptomyces sp. FXP04 on Seed Germination and Seedling Growth of Rice [J]. Crops, 2020, 36(6): 163-169.
[13] Yang Wanjun, Pan Xiangyu, Wang Xiuhua, Wang Lu, Zhao Yan. Genetic Diversity Analysis of Yield and Agronomic Traits of 119 Alfalfa Varieties (Lines) [J]. Crops, 2020, 36(6): 17-22.
[14] Miao Jiankun, Xu Han, Yang Hao, Yan Han, Chu Jin, Bai Yuanjun, Dong Hai. Resistance Evaluation of Main Rice Cultivars to False Smut Rice in Liaoning Province [J]. Crops, 2020, 36(6): 38-46.
[15] Cao Xiaochuang, Li Yefeng, Wu Longlong, Zhu Chunquan, Zhu Lianfeng, Zhang Junhua, Jin Qianyu. Effects of Organic Soluble Fertilizer on the Accumulation and Translocation of Dry Matter and Nitrogen of Rice [J]. Crops, 2020, 36(5): 110-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[4] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[5] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .
[6] Wenlian Bai,Yi Zheng,Jingxiu Xiao. Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review[J]. Crops, 2018, 34(4): 20 -27 .
[7] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China[J]. Crops, 2018, 34(4): 42 -47 .
[8] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress[J]. Crops, 2018, 34(4): 48 -52 .
[9] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane[J]. Crops, 2018, 34(4): 53 -61 .
[10] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang[J]. Crops, 2018, 34(4): 62 -68 .