Crops ›› 2021, Vol. 37 ›› Issue (6): 122-128.doi: 10.16035/j.issn.1001-7283.2021.06.019

Previous Articles     Next Articles

Effects of Crop Rotation on Soil Microbial Community in Sweet Potato Field

Liu Yajun(), Wang Wenjing, Wang Honggang, Wang Qi, Hu Qiguo(), Chu Fengli   

  1. Shang qiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, Henan, China
  • Received:2020-12-21 Revised:2021-02-23 Online:2021-12-15 Published:2021-12-16
  • Contact: Hu Qiguo E-mail:liuyajun0812@163.com;huqiguo1234@126.com

Abstract:

In order to alleviate the obstacle of sweet potato continuous cropping, we explored the effects of different rotation patterns (sweet potato continuous cropping, sweet potato-peanut rotation and sweet potato-wheat rotation) on soil microbial community by PLFA and biology ecological plate method, and the changes of soil microbial community structure, the utilization ability of carbon source and diversity index under the different rotation patterns of sweet potato were determined. The main results were as follows: compared with the continuous cropping of sweet potato, sweet potato-peanut rotation significantly (P<0.05) improved the contents of the biomass of soil microbial bacteria, actinomycetes, Gram-positive bacteria and Gram-negative bacteria, reduced the biomass of fungi and the ratio of fungi to bacteria, sweet potato-wheat rotation reduce the biomass of soil microbial bacteria, actinomycetes, fungi, Gram-positive bacteria and Gram-negative bacteria, and improved the ratio of fungi to bacteria. Sweet potato-peanut rotation improved the utilization ability of carboxylic acid compound, carbohydrate, amino acid and amine compound in soil microorganism, sweet potato-wheat rotation improved the utilization ability of carbohydrate, amino acid and amine compound in soil microorganism, the utilizations of carboxylic acid compounds, aromatic compounds and carbohydrates in sweet potato-peanut treatment was significantly higher than that in sweet potato-wheat treatment; Sweet potato-peanut and sweet potato-wheat rotation improved the Shannon index, Mclntoch index and Simpson index, The Mclntoch index of the sweet potato-peanut treatment was higher than that of sweet potato-wheat treatment, while the Shannon index and Simpson index decreased significantly; The redundancy analysis (RDA) showed that there were promotion or restriction relationships among the soil microbial community structure, the utilization ability of carbon source and diversity index with the soil nutrients. In conclusion, the rotation of sweet potato -peanut or -wheat can change the structure and functional diversity of soil microbial community.

Key words: Sweet potato, Rotation, Soil microorganism, Phospholipid fatty acid, Utilization ability of carbon source, Diversity index

Table 1

Effects of different rotation patterns on the main soil microbial community nmol/g"

处理
Treatment
真菌
Fungal
细菌
Bacterial
放线菌
Actinomyc-ete
真菌/细菌
Fungal/bacterial
革兰氏阳性菌(G+
Gram positive
革兰氏阴性菌(G-
Gram negative
G+/G-
甘薯―甘薯S-S 4.12±0.36a 10.76±0.73b 2.48±0.25b 0.38±0.08a 3.59±0.33b 7.18±0.31b 0.50±0.05a
甘薯―花生S-P 3.35±0.12b 13.63±0.36a 2.69±0.10a 0.25±0.02b 4.90±0.69a 8.73±0.32a 0.57±0.06a
甘薯―小麦S-W 3.97±0.39ab 9.85±0.22b 2.46±0.12b 0.41±0.07a 3.10±0.11b 6.76±0.39b 0.46±0.04a

Table 2

Effects of different rotation patterns on carbon source utilization of soil microbial community"

处理
Treatment
羧酸类化合物
Carboxylic acids
多聚化合物
Poly compound
碳水化合物
Carbohydrates
芳香化合物
Aromatic
氨基酸
Amino acid
胺类化合物
Amine
甘薯―甘薯S-S 1.13±0.10b 0.85±0.16a 0.69±0.07c 0.66±0.07a 0.51±0.04b 0.38±0.06b
甘薯―花生S-P 1.25±0.06a 0.79±0.13a 1.68±0.11a 0.62±0.05a 1.26±0.11a 0.89±0.07a
甘薯―小麦S-W 0.76±0.07c 0.66±0.04a 1.42±0.14b 0.26±0.03b 1.11±0.08a 0.87±0.16a

Table 3

Effects of different rotation patterns on soil microbial diversity indexes"

处理
Treatment
丰富度指数
Shannon index
均匀度指数
Mclntoch index
优势度指数
Simpson index
甘薯―甘薯S-S 1.79±0.28c 4.39±0.47b 43.64±1.24c
甘薯―花生S-P 2.54±0.12b 8.74±0.43a 48.57±2.12b
甘薯―小麦S-W 2.87±0.15a 7.97±0.73a 63.07±1.47a

Fig.1

The RDA analysis between soil microbial community structure (a), carbon source utilization capacity(b), diversity index (c)and environmental factors The AP, AK, AN, TN, TP, OM and pH represent the soil available phosphorus, available potassium, alkali hydrolyzable nitrogen, total nitrogen, total phosphorus, organic matter and pH value, respectively; The F/B, bacterial, actinomycete, fungal, G+, G-, G+/C- represent the fungi/bacteria ratio, soil fungi, bacteria, actinomycete, Gram-positive bacteria, Gram-negative bacteria, Gram-positive bacteria / Gram-negative bacteria ratio, respectively; The carboh, pol, carbox, phe, amino, amine represent the carbohydrates, polymers, carboxylic acids, aromatic compounds, amino acids, amines, The Shanindx, Mclnindx and Simpindx represent the aroma index, evenness index and Simpson index, respectively. SS1-SS4, SP1-SP4 and SW1-SW4 represent four repeats of sweet potato-sweet potato continuous cropping, sweet potato-peanut rotation and sweet potato- wheat rotation, respectively"

[1] 贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 2013, 21(4):412-421.
[2] 王光华, 金剑, 徐美娜, 等. 植物、土壤及土壤管理对土壤微生物群落结构的影响. 生态学杂志, 2006, 25(5):550-556.
[3] Aivey S, Yang C H, Buerkert A, et al. Cereal/legume rotation effects on rhizosphere bacterial community structure in west African soils. Biology and Fertility of Soils, 2003, 37(2):73-82.
doi: 10.1007/s00374-002-0573-2
[4] 谭雪莲. 轮作模式下马铃薯土壤微生物多样性、酶活性及根系分泌物的研究. 兰州:甘肃农业大学, 2016.
[5] Ling N, Deng K Y, Song Y, et al. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term applicationof a novel bioorganic fertilizer. Microbiological Research, 2014, 169(7/8):570-578.
doi: 10.1016/j.micres.2013.10.004
[6] 马代夫, 李强, 曹清河, 等. 中国甘薯产业及产业技术的发展与展望. 江苏农业学报, 2012, 28(5):969-973.
[7] 高志远, 胡亚亚, 刘兰服, 等. 甘薯连作对根际土壤微生物群落结构的影响. 核农学报, 2019, 33(6):1248-1255.
[8] Xiao X M, Cheng Z H, Meng H W, et al. Intercropping with garlic alleviated continuous cropping obstacle of cucumber in plastic tunnel. Acta Agriculturae Scandinavica, 2012, 62(8):696-705.
[9] Zhang Y T, Fan T F, Jia W S, et al. Identification and characterization of a Bacillus subtilis strain TS06 as bio-control agent of strawberry replant disease (Fusarium and Verticilium Wilts). African Journal of Biotechnology, 2012, 11(3):570-580.
[10] 康亚龙, 刘彦荣, 刘建国, 等. 连作对加工番茄植株生理活性和物质生产的影响. 中国生态农业学报, 2015, 23(3):319-328.
[11] 林栋, 张德罡, McCulley Rebecca L. 蔬菜-牧草轮作5年草地土壤微生物量变化及其群落结构分异. 草业学报, 2019, 28(11):22-31.
[12] 刘杭. 黑土区典型作物轮作和连作对土壤微生物群落结构的影响. 长春:中国科学院大学(中国科学院东北地理与农业生态研究所), 2019.
[13] 王仪明, 雷艳芳, 魏臻武, 等. 不同轮作模式对青贮玉米产量、品质及土壤肥力的影响. 核农学报, 2017, 31(9):1803-1810.
[14] 苏燕, 李婕, 曹雪颖, 等. 水旱轮作模式下马铃薯根际土壤细菌群落多样性分析. 南方农业学报, 2020, 51(10):2374-2382.
[15] 姚小东, 李孝刚, 丁昌峰, 等. 连作和轮作模式下花生土壤微生物群落不同微域分布特征. 土壤学报, 2019, 56(4):975-985.
[16] 付风云, 相立, 徐少卓, 等. 多菌灵与微生物有机肥复合对连作平邑甜茶幼苗及土壤的影响. 园艺学报, 2016, 43(8):1452-1462.
[17] Timothy S, Prather W, Thomas L, et al. Interplanting grasses into alfalfa controls weeds in older stands. California Agriculture, 2000, 54(6):37-41.
doi: 10.3733/ca.v054n06p37
[18] Bardgett R D, Hobbs P J, Frostegard A. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 1996, 22(3):261-264.
doi: 10.1007/BF00382522
[19] 刘亚军, 马琨, 李越, 等. 马铃薯间作栽培对土壤微生物群落结构与功能的影响. 核农学报, 2018, 32(6):1186-1194.
[20] 马琨, 张丽, 杜茜, 等. 马铃薯连作栽培对土壤微生物群落的影响. 水土保持学报, 2010, 24(4):229-233.
[21] 李青梅, 张玲玲, 刘红梅, 等. 覆盖作物多样性对猕猴桃园土壤微生物群落功能的影响. 农业环境科学学报, 2020, 39(2):351-359.
[22] Lin X G, Yin R, Zhang H Y, et al. Changes of soil microbiological properties caused by land use changing from rice-wheat rotation to vegetable cultivation. Environmental Geochemistry and Health, 2004, 26(2/3):119-128.
doi: 10.1023/B:EGAH.0000039574.99651.65
[23] 魏常慧, 刘亚军, 冶秀香, 等. 马铃薯/玉米间作栽培对土壤和作物的影响. 浙江大学学报(农业与生命科学版), 2017, 43(1):54-64.
[24] Lupwayi N Z, Harker K N, O’Donovan J T, et al. Relating soil microbial properties to yields of no-till canola on the Canadian prairies. European Journal of Agronomy, 2015, 62:110-119.
doi: 10.1016/j.eja.2014.10.004
[25] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 2010, 34(8):979-988.
doi: 10.3773/j.issn.1005-264x.2010.08.011
[26] 姚晓东, 王娓, 曾辉. 磷脂脂肪酸法在土壤微生物群落分析中的应用. 微生物学通报, 2016, 43(9):2086-2095.
[27] 李雪静, 徐天乐, 陈保冬, 等. 荒漠和草原生态系统丛枝菌根真菌多样性和群落结构. 生态学杂志, 2017, 36(10):2734-2743.
[28] 周文杰, 吕德国, 秦嗣军. 植物与根际微生物相互作用关系研究进展. 吉林农业大学学报, 2016, 38(3):253-260.
[29] 胡彦婷, 王雅娜, 崔丽婷, 等. 轮作和连作对胡萝卜根际和非根际细菌多样性的影响. 基因组学与应用生物学, 2019, 38(5):2078-2085.
[30] 张笑宇, 段宏群, 王闷灵, 等. 轮作与连作对烟田土壤微生物区系及多样性的影响. 中国土壤与肥料, 2018(6):84-90.
[31] Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere intercations with plants and other organisms. Annual Review of Plant Biology, 2006, 57:233.
doi: 10.1146/arplant.2006.57.issue-1
[32] 杨尚东, 李荣坦, 吴俊, 等. 番茄连作与轮作土壤生物学特性及细菌群落结构的比较. 生态环境学报, 2016, 25(1):76-83.
[33] 张立成, 邵继海, 林毅青, 等. 稻-稻-油菜轮作对土壤微生物活性和多样性的影响. 生态环境学报, 2017, 26(2):204-210.
[34] 陈慧. 地黄连作对土壤微生物的影响. 福州:福建农林大学, 2008.
[35] Song M H, Xu X L, Hu Q W, et al. Interactions of plant species mediated plant competition for inorganic nitrogen with soil microorganisms in an alpine meadow. Plant and Soil, 2007, 297(1/2):127-137.
doi: 10.1007/s11104-007-9326-1
[36] Venter Z S, Jacobs K, Hawkins H. The impact of crop rotation on soil microbial diversity:A meta-analysis. Pedobiologia, 2016, 59(4):215-223.
doi: 10.1016/j.pedobi.2016.04.001
[37] Zhang X, Zhang R, Gao J, et al. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology and Biochemistry. 2017, 104:208-217.
[38] Liu W, Jiang L, Hu S J, et al. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biology and Biochemistry, 2014, 72(6):116-122.
doi: 10.1016/j.soilbio.2014.01.022
[1] Long Ruiping, Zhang Chaozhong, Ge Qinying, Wan Weidong, Wang Qin, Li Guiyong, Xia Qiongmei, Zhu Haiping, Yang Congdang. Analysis of Growth Characteristics and Economic Benefit of Mechanical Transplanted Japonica Rice with Applying Panicle Nitrogen under Rotation of Paddy-Upland [J]. Crops, 2022, 38(1): 124-129.
[2] Hu Qiguo, Liu Yajun, Wang Wenjing, Wang Qi, Wang Honggang, Chu Fengli. Effects of Sweet Potato Rotation and Intercropping on the Microbial Community of Rhizosphere Soil [J]. Crops, 2021, 37(5): 153-159.
[3] Wang Lifang, Zhang Dejian, Zhang Tingting. Effects of Tillage Methods on Soil Microbial Community Diversity in Oat Fields [J]. Crops, 2021, 37(3): 57-64.
[4] Fan Yegeng, Chen Rongfa, Yan Haifeng, Zhou Huiwen, Weng Mengling, Huang Xing, Luo Ting, Zhou Zhongfeng, Qiu Lihang, Wu Jianming. Effects of Sugarcane Rotation Green Fodder Corn and Peanut on Sugarcane Growth and Soil Properties [J]. Crops, 2021, 37(1): 104-111.
[5] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
[6] Shan Feibiao, Du Ruixia, Wang Yongxing, Yang Qinfang, Liu Chunhui, Chen Yang. Genetic Diversity Analysis of Sunflower (Helianthus annuus L.) Based on DUS Testing [J]. Crops, 2020, 36(4): 107-113.
[7] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
[8] Guo Qilin,Wu Haiyun,Li Huan,Liu Qing. Ecological Stoichiometric Characteristics of Carbon, Nitrogen and Phosphorus in Leaves and Stems of Different Types of Sweet Potato [J]. Crops, 2020, 36(2): 41-47.
[9] Gu Kejun,Gu Dongxiang,Zhang Simei,Zhang Chuanhui,Zhang Henggan,Wu Jingjing,Fan Pingsheng. Short-Term Effects of Tillage and Organic Fertilizer Application on Soil Characters and Annual Rice-Wheat Yield in Coastal Low- and Medium-Yield Farmland of the Old Yellow River [J]. Crops, 2020, 36(1): 76-80.
[10] Huang Binglin,Wang Mengxue,Jin Xijun,Hu Guohua,Zhang Yuxian. Effects of Different Tillage Treatments on Soil Microorganisms, Enzyme Activities and Nutrients [J]. Crops, 2019, 35(6): 104-113.
[11] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato [J]. Crops, 2019, 35(5): 114-119.
[12] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain [J]. Crops, 2019, 35(5): 143-150.
[13] Zhang Haibin,Meng Meilian,Liu Kunyu,Zhang Lingxiang,Chen Youjun. Effects of Different Rotation Patterns on Dry Matter Accumulation, Disease Occurrence and Yield of Potato [J]. Crops, 2019, 35(4): 170-175.
[14] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato [J]. Crops, 2019, 35(3): 158-161.
[15] Yajun Liu,Fengli Chu,Wenjing Wang,Qiguo Hu,Aimei Yang. Effects of Different Supporting Cultivation Measures on the Yield and Weeds Control of Sweet Potato cv. Shangshu 9 [J]. Crops, 2019, 35(2): 179-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!