Crops ›› 2021, Vol. 37 ›› Issue (6): 58-61.doi: 10.16035/j.issn.1001-7283.2021.06.009

Previous Articles     Next Articles

Identification of New Heading Date QTLs Using High Density Genetic Map in Rice

Su Daiqun1(), Chen Liang1, Li Feng1, Wu Qi1, Bai Junjie2, Zou Detang2, Wang Jingguo2, Liu Hualong2(), Zheng Hongliang2   

  1. 1Heilongjiang Province Seed Industry Technical Service Center, Harbin 150008, Heilongjiang, China
    2Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region,Ministry of Education, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2021-03-26 Revised:2021-06-22 Online:2021-12-15 Published:2021-12-16
  • Contact: Liu Hualong E-mail:sudaiqun@163.com;liuhualongneau@163.com

Abstract:

Heading date is the key factor to determine the rice planting area and its seasonal adaptability, so it is very important to find new major QTLs controlling rice heading date. The high-density genetic linkage map with 527 bin markers of the combinant inbred line (RIL) population derived from 'Kongyu 131/Xiaobaijingzi' was used for genotype analysis of heading date in rice by genotyping by target sequencing (GBTS). Through the basic statistical analysis of the parents and the RIL population, it was found that the parent's heading date was extremely significantly different, the phenotypes were within the range of the RIL population, and there was an obvious phenomenon of transgressive segregation that conformed to the normal distribution. Four QTLs were detected on chromosomes 1, 3, and 7 of rice using full interval mapping method of IciMapping 4.2. Among them, three QTLs contained known genes OsGI, Hd6 and Ghd7 related to heading stage, respectively. qHD-3-1 was a new QTL controlling the heading date of rice.

Key words: Rice, Heading date, Bin marker, QTL, Genotyping by target sequencing (GBTS), Recombinant inbred lines

Table 1

Basic statistical analysis of heading stage of rice"

项目
Item
亲本Parents 重组自交系群体RIL population
空育131
Kongyu 131 (d)
小白粳子
Xiaobaijingzi (d)
平均值
Mean (d)
标准差
Standard deviation
变异范围
Range (d)
变异系数
Coefficient of variation (%)
峰度
Kurtosis
偏度
Skewness
抽穗期Heading date 91.00 104.00** 97.74 7.51 76.00~111.00 7.68 -0.42 -0.23

Fig.1

Distribution of QTLs on chromosomes at heading stage in rice"

Table 2

Rice heading stage QTLs and its genetic effects"

数量性状位点
QTL
染色体
Chromosome
标记区间
Marker interval
LOD值
LOD peak
贡献率
Contribution rate (%)
加性效应
Additive effect
已知基因
Known gene
qHD-1-1 1 C1_4330799 C1_4645558 3.0181 4.0619 1.5969 OsGI
qHD-3-1 3 C3_799346 C3_1493308 7.0671 10.5098 2.7637
qHD-3-2 3 C3_29189855 C3_33130038 3.2297 4.5338 1.6866 Hd6
qHD-7-1 7 C7_8809828 C7_13201476 13.2288 21.7016 -3.8409 Ghd7
[1] 王远征, 王晓菁, 李源, 等. 北方粳稻产量与品质性状及其相互关系分析. 作物学报, 2015, 41(6):910-918.
[2] Normile D. Reinventing rice to feed the world. Science, 2008, 321(5887):330-333.
doi: 10.1126/science.321.5887.330 pmid: 18635770
[3] Fujino K, Sekiguchi H. Mapping of quantitative trait loci controlling heading date among rice cultivars in the northern most region of Japan. Breeding Science, 2008, 58(4):367-373.
doi: 10.1270/jsbbs.58.367
[4] Cheng L R, Wang J, Ye G, et al. Identification of stably expressed QTL for heading date using reciprocal introgression line and recombinant inbred line populations in rice. Genetics Research, 2012, 94(5):245-253.
doi: 10.1017/S0016672312000444
[5] 郭梁, 张振华, 庄杰云. 水稻抽穗期QTL及其与产量性状遗传控制的关系. 中国水稻科学, 2012, 26(2):235-245.
[6] Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a,a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology, 2002, 43(10):1096-1105.
pmid: 12407188
[7] Zong W, Ren D, Huang M, et al. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1,Ghd7 and DTH8 in rice heading. New Phytologist, 2021, 229(3):1635-1649.
doi: 10.1111/nph.v229.3
[8] Li J, Chu H, Zhang Y, et al. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS ONE, 2012, 7(3):e34231.
doi: 10.1371/journal.pone.0034231
[9] Liu X, Zhang H, Li H, et al. Fine-mapping quantitative trait loci for body weight and abdominal fat traits:effects of marker density and sample size. Poultry Science, 2008, 87(7):1314-1319.
doi: 10.3382/ps.2007-00512 pmid: 18577610
[10] Thomson M J. High-throughput SNP genotyping to accelerate crop improvement. Plant Breeding and Biotechnology, 2014, 2(3):195-212.
doi: 10.9787/PBB.2014.2.3.195
[11] 李冬秀, 杨靖, 孙凯, 等. 基于高密度遗传图谱定位新的水稻抽穗期QTLs. 西北农林科技大学学报, 2020, 48(8):44-49.
[12] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138(3):963-971.
pmid: 7851788
[13] McCouch S R. Gene nomenclature system for rice. Rice, 2008, 1(1):72-84.
doi: 10.1007/s12284-008-9004-9
[14] 黄成, 姜树坤, 刘梦红, 等. 水稻抽穗期的QTL剖析. 华北农学报, 2009, 24(3):7-9.
[15] Yu H, Xie W, Li J, et al. A whole‐genome SNP array (RICE 6 K) for genomic breeding in rice. Plant Biotechnology Journal, 2014, 12(1):28-37.
doi: 10.1111/pbi.2013.12.issue-1
[16] Izawa T, Mihara M, Suzuki Y, et al. Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. The Plant Cell, 2011, 23(5):1741-1755.
doi: 10.1105/tpc.111.083238
[17] Takahashi Y, Shomura A, Sasaki T, et al. Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the α subunit of protein kinase CK2. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14):7922-7927.
[18] Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6):761-767.
doi: 10.1038/ng.143
[1] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
[2] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[3] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[4] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[5] Li Xu, Fu Lidong, Wang Yu, Sui Xin, Ren Hai, Lü Xiaohong, Ma Chang, Du Meng, Mao Ting. Effects of Genetic Interaction between DEP1 and NRT1.1B on Nitrogen Use in Rice [J]. Crops, 2021, 37(6): 22-27.
[6] Yu Julong, Zhang Guo, Zhao Laicheng, Yao Kebing, Luo Guanghua, Fang Jichao, Zhang Jianhua, Jiao Yang, Shu Zhaolin. Control Effects of Different Seed Treatments on the Rice Leaf Folder under Machine-Planting Condition [J]. Crops, 2021, 37(6): 224-229.
[7] Zhang Jun, Deng Aixing, Shang Ziyin, Tang Zhiwei, Yan Shengji, Zhang Weijian. Innovative Rice Cropping for Higher Yield and Less CH4 Emission under Crop Straw Incorporation [J]. Crops, 2021, 37(6): 230-235.
[8] Yu Meixia, Deng Haodong, Tan Jing’ai, Song Guiting, Wu Guangliang, Chen Liping, Liu Ruiqi, Zhou Andong, He Haohua, Bian Jianmin. Detection of QTL for Root Length and Bud Length at Germination Stage in Low Temperature Using CSSLs in Rice (Oryza sativa) [J]. Crops, 2021, 37(6): 36-45.
[9] Zhou Qiyun, Zheng Chongyi, Jing Yongfeng, Liu Yongjun, Peng Shuguang, Chen Tao, Liu Zhixuan, Hu Ruiwen, Zhou Qingming, Li Juan. Study on Soil Organic Matter Content and Its Relationship with Nitrogen, Phosphorus and Potassium in Different Soil Layers of Rice-Growing Tobacco Areas in Southern Hunan [J]. Crops, 2021, 37(5): 114-119.
[10] Shi Nan, Gao Zhiqiang, Hu Haiyan, Chen Chongyi, Wen Shuangya. The Effects of Ordered Machine Thickening and Reducing Fertilizer on Yield and Partial Fertilizer Productivity of Hybrid Rice [J]. Crops, 2021, 37(5): 128-133.
[11] Tang Zhiqiang, Zhang Liying, He Na, Ma Zuobing, Zhao Mingzhu, Wang Changhua, Zheng Wenjing, Yin Yong’an, Wang Hui. Effects of Mechanical Direct Dry Seeding on Rice Growth, Photosynthetic Characteristics and Yield [J]. Crops, 2021, 37(5): 87-94.
[12] Pan Gaofeng, Wang Benfu, Chen Bo, Fang Zhenbing, Zhao Shasha, Tian Yonghong. Effects of Seeding Date on Yield, Growth Period and Utilization of Temperature and Sunshine of Different Types of Japonica Rice in North Central of Hubei Province [J]. Crops, 2021, 37(4): 105-111.
[13] Tong Tianyi, Cai Jianxuan, Zhang Jisheng, Li Lin, Ma Lin, He Roujing, Tang Xiangru. Effects of Fertilizer Types on Yield, Quality and Aroma of Fragrant Rice [J]. Crops, 2021, 37(4): 152-158.
[14] Wu Ke, Xie Huimin, Liu Wenqi, Mo Bingmao, Wei Guoliang, Lu Xian, Li Zhuanglin, Deng Senxia, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Rice Grain Yield and Yield Components in Double Cropping Rice Area of Southern China [J]. Crops, 2021, 37(4): 178-183.
[15] Ling Chen, Liu Hong, Yang Zhe, Huang Zhanquan, Chen Mengqiang, Rao Dehua, Xu Zhenjiang. Effects of Double-Cropping Rice Cultivation on the Expression of Quantitative Characteristics of Rice DUS Testing Example Varieties [J]. Crops, 2021, 37(4): 18-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!