Crops ›› 2022, Vol. 38 ›› Issue (1): 110-115.doi: 10.16035/j.issn.1001-7283.2022.01.016
Previous Articles Next Articles
Wu Pengbo(), Li Lijun, Zhang Yanli
[1] |
Jin H, Plaha P, Park J Y, et al. Comparative EST profiles of leaf and root of Leymus chinensis,a xerophilous grass adapted to high pH sodic soil. Plant Science, 2006, 170:1081-1086.
doi: 10.1016/j.plantsci.2006.01.002 |
[2] |
Li J, Xu H H, Liu W C, et al. Ethylene inhibits root elongation during alkaline stress through AUX1 and associated changes in auxin accumulation. Plant Physiology, 2015, 168:1777-1791.
doi: 10.1104/pp.15.00523 |
[3] |
Sun H, Lu H, Chu L, et al. Biochar applied with appropriate rates can reduce N leaching,keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment, 2007, 575:820-825.
doi: 10.1016/j.scitotenv.2016.09.137 |
[4] | Kawanabe S, Zhu T. Degeneration and conservational trial of Aneurolepidium chinense grassland in Northern China. Grassland Science, 1991, 39:91-99. |
[5] |
Wang H, Lin X, Cao S, et al. Alkali tolerance in rice (Oryza sativa L.):growth,photosynthesis,nitrogen metabolism,and ion homeostasis. Photosynthetica, 2015, 53:55-65.
doi: 10.1007/s11099-015-0079-4 |
[6] |
Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environmental and Experimental Botany, 2005, 54(1):8-21.
doi: 10.1016/j.envexpbot.2004.05.003 |
[7] |
Shi D C, Wang D. Effects of various salt-alkali mixed stresses on Aneurolepidium chinense (Trin) Kitag. Plant Soil, 2005, 271:15-26.
doi: 10.1007/s11104-004-1307-z |
[8] |
Chen W C, Cui P J, Sun H Y, et al. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Industrial Crops and Products, 2009, 30:351-358.
doi: 10.1016/j.indcrop.2009.06.007 |
[9] | Qasim M. Physiological and biochemical studiesin a potential oilseed crop canola (Brassica napus L.) under salinity (NaCl) stress. Faisalabad, Pakistan:University of Agriculture, 2000. |
[10] | Maas E V. Testing crops for salinity tolerance//Marnville J W,Baligar B V,Duncan R R,et al. Proc. Workshop on Adaptation of Plants to Soil Stresses,INTSORMIL Publication, 1993:234-247. |
[11] | 张新草, 薛项潇, 姜深, 等. 大豆种质发芽期耐盐碱性鉴定及指标筛选. 西北农业学报, 2020, 29(3):374-381. |
[12] | 桑晓慧, 赵云雷, 王红梅, 等. 陆地棉抗旱性与SSR分子标记的关联分析. 棉花学报, 2017, 29(3):241-252. |
[13] | 田小霞, 毛培春, 孟林, 等. 无芒雀麦苗期耐盐指标筛选及耐盐性综合评价. 干旱区资源与环境, 2017, 31(10):156-161. |
[14] |
Munns R. Comparative physiology of salt and water stress. Plant,Cell and Environment, 2002, 25:239-250.
doi: 10.1046/j.0016-8025.2001.00808.x |
[15] | Seshadri B, Bolan N S, Naidu R, et al. Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. Journal of Soil Science and Plant Nutrition, 2015, 15:524-528. |
[16] |
Vítková M, Komárek M, Tejnecky V, et al. Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. Journal of Hazardous Materials, 2015, 293:7-14.
doi: 10.1016/j.jhazmat.2015.03.033 |
[17] |
Luo Q, Sun L N, Hu X M, et al. The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress:metabonomics analysis. PLoS ONE, 2014, 9(12):e115581.
doi: 10.1371/journal.pone.0115581 |
[18] |
Soudek P, Petrová S, Buzek M, et al. Uranium uptake in Nicotiana sp. under hydroponic conditions. Journal of Geochemical Exploration, 2014, 142(4):130-137.
doi: 10.1016/j.gexplo.2013.10.001 |
[19] |
Guo L Q, Shi D C, Wang D L, et al. The key physiological response to alkali stress by the alkali‐resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere. Journal of Agronomy and Crop Science, 2010, 196(2):123-135.
doi: 10.1111/jac.2010.196.issue-2 |
[20] |
Guo S H, Niu Y J, Zhai H, et al. Effects of alkaline stress on organic acid metabolism in roots of grape hybrid rootstocks. Scientia Horticulturae, 2018, 227:255-260.
doi: 10.1016/j.scienta.2017.09.051 |
[21] | Qu Y G, Zhao K F. Comparative studies on growth and physiological reaction of Zea mays under NaCl and Na2CO3 stress. Acta Agronomica Sinica, 2004, 30:334-341. |
[22] | Qu Y G, Zhao K F. Comparative of the stress effects of NaCl and Na2CO3 on Suaeda salsa L. Journal of Plant Physiology and Molecular Biology, 2003, 29:387-394. |
[23] |
Toal M E, Yeomans C V, Killham K S, et al. A review of rhizosphere carbon flow modeling. Plant and Soil, 2000, 222:263-281.
doi: 10.1023/A:1004736021965 |
[24] | 杨玲, 沈海龙, 崔晓涛. NaHCO3胁迫下新西伯利亚银白杨幼苗生长和光合能力变化. 林业科学, 2012, 48(7):51-55. |
[25] | 杨传宝, 倪惠菁, 李善文, 等. 白杨派无性系苗期对NaHCO3胁迫的生长生理响应及耐盐碱性综合评价. 植物生理学报, 2016, 52(10):1555-1564. |
[26] | 王景艳, 刘兆普, 刘玲, 等. NaCl胁迫对长春花幼苗离子分布和光合作用的影响. 生态学杂志, 2008(10):1680-1684. |
[27] | 景宇鹏. 土默川平原盐渍化土壤改良前后土壤特性及玉米品种耐盐性研究. 呼和浩特:内蒙古农业大学, 2014. |
[28] | 王婧泽, 高树, 孙丽芳, 等. 3个玉米自交系对盐胁迫的生理响应及耐盐性评价. 干旱地区农业研究, 2017, 35(2):89-95. |
[29] | Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Botanica Sinica, 2002, 44(5):537-540. |
[30] | 邹春雷. 甜菜适应碱性盐胁迫的生理机制及其转录组分析. 哈尔滨:东北农业大学, 2019. |
[31] | 李朝苏, 刘鹏, 徐根娣, 等. 外源有机酸对荞麦幼苗铝毒害的缓解效应. 作物学报, 2006, 32(4):532-539. |
[32] | 张世兴. 浇灌乙酸及草酸对葡萄盐碱胁迫的缓解作用. 泰安:山东农业大学, 2020. |
[33] |
Yang C W, Chong J N, Li C Y, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 2007, 294(1/2):263-276.
doi: 10.1007/s11104-007-9251-3 |
[34] |
Yang C W, Shi D C, Wang D L, et al. Comparative effects of salt and alkali stresses on growth,osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 2008, 56(2):179-190.
doi: 10.1007/s10725-008-9299-y |
[1] | Li Xinhao, Li Jun, Wan Lin, Liu Lixin, Liu Junquan, Ma Ni. Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area [J]. Crops, 2021, 37(6): 139-144. |
[2] | Xiong Tinghao, Zi Tao, Zhang Ai, Hu Yuqian, Peng Zhi, Song Haixing. Effects of Different Organic Fertilizer Dosages on Nutrient Utilization and Yield of Rapeseed under Chemical Fertilizer Reduction [J]. Crops, 2021, 37(3): 133-139. |
[3] | Li Zilin, Lu Yachun, Zhao Leifeng, Fan Dongsheng, Wei Zhong, Zhou Wenliang, Huang Liguang, Huang Yang, Huang Jingpeng, Gu Xinquan, Nian Fuzhao. Comprehensive Evaluation of the Suitability of Tobacco Planting Soil Fertility in Jingxi City [J]. Crops, 2021, 37(3): 155-160. |
[4] | Qin Lu, Wang Jianqiang, Han Peipei, Li Yinshui, Gu Chiming, Hu Xiaojia, Xie Lihua, Liao Xing. Difference in Nitrogen Absorption and Transportation and Utilization of Rapeseed Germplasms with Contrasting Nitrogen Efficiency [J]. Crops, 2021, 37(3): 28-33. |
[5] | Yi Zhenxie, Wang Yuanyuan, Gu Zihan, Shuai Zeyu, Tu Naimei, Chen Pingping. Study on the Feasibility of Alternative Planting of Rapeseed-Middle Rice to Double Cropping Rice in Cadmium Polluted Rice Area [J]. Crops, 2021, 37(3): 65-69. |
[6] | Wang Rui, Ping Jun′ai, Zhang Fuyao, Zhan Pengjie, Chu Jianqiang. Identification and Evaluation of Sorghum Breeding Resources for Barren Tolerance [J]. Crops, 2020, 36(6): 30-37. |
[7] | Zhang Yaowen, Li Dianrong, Hou Junli, Kong Jian, Zhang Wenxue, Dong Yuhong, Zhao Xiaoguang, Tian Jianhua, Zhang Zhongxin. Present Studies on Linolenic Acid in Rapeseed Seeds and Suggestions for Improvement [J]. Crops, 2020, 36(4): 21-29. |
[8] | Liu Haidong,Yu Qinglan,Wang Ruisheng,Du Dezhi. Screening of the Rapeseed Resoures for Resistance to Flea Beetle in Spring Rapeseed Region [J]. Crops, 2020, 36(2): 34-40. |
[9] | Shi Liran,Bai Lirong,Lü Yaci,Zhao Minghui,Zhao Fengwu,Li Huimin. Analysis of Salt Tolerance at the Seedling Stage of Wheat Hybrid Variety Heng 9966 [J]. Crops, 2018, 34(6): 149-153. |
|