Crops ›› 2023, Vol. 39 ›› Issue (1): 129-135.doi: 10.16035/j.issn.1001-7283.2023.01.019

Previous Articles     Next Articles

Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings

Chen Dong1,2(), Zou Jing1,2, Guo Ganggang1,2, Dai Wendian3, Song Shaoguang3, Huang Ying1,2()   

  1. 1College of Tobacco, Guizhou University, Guiyang 550025, Guizhou, China
    2Guizhou Key Laboratory of Tobacco Quality Research, Guiyang 550025, Guizhou, China
    3Zunyi Daxing Compound Fertilizer Co., Ltd., Zunyi 563100, Guizhou, China
  • Received:2021-09-22 Revised:2022-05-31 Online:2023-02-15 Published:2023-02-22

Abstract:

In order to improve the quality of transplanted tobacco seedlings in pits, the effects of different seedlings trays (T1-T5 treatments) on the quality and main physiological characteristics of tobacco seedlings were studied. The results showed that, compared with T1 treatment, the seedling trays with stomata (T2-T4 treatments) could make the substrate temperature increase rapidly in the morning and weaken the daily variation, promote the growth and development of roots, improve the quality of tobacco seedlings; the total root length and root volume, whole plant dry weight and root-shoot ratio were increased by 58.05cm, 0.05cm3, 0.21g and 0.04, respectively; catalase and superoxide dismutase activities were increased by 3.12 and 22.29U/mg, respectively; the contents of soluble protein and chlorophyll were not significantly different; the activity of peroxidase was slightly lower, and the stress resistance of tobacco seedlings was enhanced. The plant of T2 treatment was short in different specifications of new seedling trays, while T4 and T5 treatments had fewer seedling holes and high seedling cost. In summary, T3 treatment of tobacco seedlings quality is good, suitable for production and application.

Key words: Flue-cured tobacco, Seedling tray, Tobacco seedling quality, Physiological characteristics

Table 1

The seedling hole size and external characteristics of seedling tray with different specifications"

处理
Treatment
苗穴孔数
Number of
seedling holes
上口径:长×宽
Upper diameter:
long×width (mm)
下口径:长×宽
Lower diameter:
long×width (mm)
盘高
Tray height
(mm)
苗穴容积
Seedling cavity
volume (cm3)
苗盘有无气孔
Whether there are pores
in seedling tray
外部特征说明
Description of
external features
T1 160 30×30 10×10 60 26.00 无气孔 常规育苗盘
T2 160 28×28 10×10 60 23.28 有气孔 盘底呈凸状
T3 160 28×28 10×10 60 23.28 有气孔
T4 128 35×27 19×10 60 31.17 有气孔
T5 135 30×29 10×10 60 25.30 有气孔

Fig.1

Front view, side view and cross section of five kinds of seedling trays"

Fig.2

Temperature changes of stomata and seedling substrate of different specifications of seedling tray (a) is a graph of the temperature change of the pores, and (b) is a graph of the temperature change of the substrate"

Table 2

Effects of different specifications of seedling trays on agronomic characteristics of tobacco seedlings at period of seedling desired to plant"

处理
Treatment
株高
Plant height(cm)
茎围
Stem circumference (cm)
叶片数
Number of blades
最大叶面积
Maximum leaf area (cm2)
成苗率
Seedling rate
T1 16.32±0.39a 1.01±0.04ab 5.90±0.13b 46.15±3.21ab 0.90±0.02a
T2 12.95±0.43b 0.91±0.02b 5.97±0.10b 39.88±2.33b 0.83±0.02a
T3 15.59±0.41a 0.99±0.03ab 6.10±0.07ab 43.86±2.92ab 0.91±0.03a
T4 15.33±0.53a 1.07±0.06a 6.20±0.10ab 53.81±4.84a 0.85±0.04a
T5 15.12±0.49a 1.04±0.05ab 6.40±0.12a 51.48±3.93ab 0.88±0.03a

Fig.3

Growth status of tobacco seedlings at seedling stage of seedling trays with different specifications"

Table 3

Effects of different specifications of seedling trays on the root of tobacco seedlings"

处理
Treatment
根系总长
Total root length
(cm)
根体积
Root volume
(cm3)
根直径
Root diameter
(mm)
鲜重Fresh weight (g) 干重Dry weight (g) 根冠比
Root shoot
ratio

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf
T1 453.83±15.55b 0.74±0.06a 0.45±0.01ab 6.13±0.26d 30.25±1.91ab 0.31±0.01c 1.99±0.26ab 0.16±0.02a
T2 441.53±26.29b 0.81±0.06a 0.48±0.01a 6.53±0.39cd 23.21±2.79b 0.33±0.00c 1.56±0.20b 0.22±0.03a
T3 511.88±30.22ab 0.79±0.11a 0.44±0.02b 7.53±0.67bc 29.03±0.73ab 0.42±0.03b 2.09±0.19ab 0.20±0.01a
T4 536.03±33.90a 0.72±0.05a 0.41±0.01b 9.09±0.39a 35.41±5.67a 0.49±0.02a 2.49±0.26a 0.20±0.02a
T5 500.17±14.23ab 0.72±0.05a 0.43±0.01b 8.57±0.08ab 33.91±3.05ab 0.43±0.02ab 2.34±0.13a 0.19±0.01a

Fig.4

Effects of different specifications of seedling tray on antioxidant enzyme activity and soluble protein content of tobacco seedlings at seedling stage The lowercase letters mean significant difference at P < 0.05, the same below"

Fig.5

Effects of different seedling trays on SPAD value of tobacco seedlings"

Table 4

Cost of seedling tray with different specifications"

处理
Treatment
苗盘规格(孔)
Seedling tray specification (hole)
苗穴容积
Seedling cavity volume (cm3)
基质用量
Substrate consumption (m3/hm2)
苗盘用量(个/hm2
Dosage of seedling tray (piece/hm2)
T1 160 26.00 0.43 104
T2 160 23.28 0.38 104
T3 160 23.28 0.38 104
T4 128 31.17 0.51 129
T5 135 25.30 0.42 123
[1] 孟庆宏, 王兆群, 杜传印. 潍坊发展现代烟草农业的实践与思考. 中国烟草科学, 2008, 29(6):64-67.
[2] 程宝玉, 张国华, 程兰. 发展现代烟草农业的实践与思考. 河南农业科学, 2008(9):10-12.
[3] 易蔓, 向金友, 杨懿德, 等. 育苗盘规格对烤烟井窖式移栽烟株生长发育及产质量的影响. 天津农业科学, 2017, 23(4):74-78.
[4] 孙刚, 王朔, 赵夕龙, 等. 烟草漂浮育苗技术的应用现状及发展措施. 种子科技, 2020, 38(15):135,137.
[5] 赵辉, 王喜英, 刘国权, 等. 烤烟漂浮育苗影响因素研究进展. 河南农业科学, 2016, 45(10):1-5.
[6] 徐兴阳, 朱明, 欧阳进, 等. 不同规格育苗盘对烤烟小苗素质的影响研究. 昆明学院学报, 2014, 36(3):21-23.
[7] 刘加红, 张瑞勤, 代绍明, 等. 烤烟漂浮育苗不同育苗盘筛选研究. 湖南农业科学, 2014(16):9-11.
[8] 云南省质量技术监督局. 烤烟小苗膜下移栽技术规程:DB53/ T 657-2014. 昆明:云南烟草标准化技术委员会, 2014.
[9] 侯跃亮, 郭全伟, 崔志军, 等. 不同规格苗盘对烟苗素质的影响. 现代农业科技, 2018(23):11-12.
[10] 赵辉, 刘国权, 王川. 不同规格育苗盘对烤烟井窖式移栽漂浮育苗烟苗生长发育的影响. 江苏农业科学, 2015(11):125-128.
[11] 朱银峰, 马聪, 李彰. 烤烟漂浮育苗温度与烟苗生长相关性研究. 烟草科技, 2000(12):37-39.
[12] 杨朝辉, 刘岱松, 石方斌, 等. 烟草漂浮育苗存在的问题及对策. 现代农业科技, 2010(13):82-83.
[13] 向鹏华, 单雪华, 颜成生. 烤烟漂浮育苗增温壮苗技术研究初探. 湖南农业科学, 2012(22):24-25.
[14] 周孚美, 高小俊. 不同增温处理对烟苗生长发育的影响. 现代农业科技, 2013(14):12-13.
[15] 赵辉, 王喜英, 刘国权, 等. 烤烟漂浮育苗影响因素研究进展. 河南农业科学, 2016, 45(10):1-5.
[16] 贵州省质量技术监督局. 贵州省烤烟漂浮育苗技术规范:DB52/T 661-2010. 贵州:中国烟草总公司贵州省公司, 2010.
[17] 姚荣坤. 烤烟井窖式移栽适栽烟苗标准研究. 作物研究, 2015, 29(增2):833-836.
[18] 国家烟草专卖局. 烟草农艺性状调查测量方法:YC/T 142-2010. 北京: 全国烟草标准化技术委员会, 2010.
[19] 刘成伟, 郭仕平, 何余勇. 低温胁迫对不同品种和苗龄烤烟早花发生的影响. 江西农业学报, 2012, 24(3):132-134.
[20] 张加云, 吉文娟, 刘苈今. 2011年3月云南倒春寒过程及其对烤烟影响评估. 云南地理环境研究, 2012, 24(1):25-29
[21] 刘迎超. 光照强度对烟草漂浮育苗基质理化生物性状影响研究. 泰安:山东农业大学, 2020.
[22] 詹良, 范才银, 林志, 等. 增温育苗对烤烟生长发育及产量产值的影响. 作物研究, 2016, 30(1):33-35,40.
[23] 刘国顺, 乔新荣, 王芳, 等. 光照强度对烤烟光合特性及其生长和品质的影响. 西北植物学报, 2007(9):1833-1837.
[24] 王德权, 孙延国, 杜玉海, 等. 移栽时间与方式对烤烟生长发育及产量、品质的影响. 作物杂志, 2021(2):87-95.
[25] 张永辉, 周超, 谭明华, 等. 不同漂浮育苗池水深度对烟苗素质及烤烟产质量影响. 江西农业学报, 2020, 32(5):71-76.
[26] 李永刚, 王玉帅, 许清孝, 等. 三种烤烟育苗方式的成苗素质及育苗成本的研究. 中国烟草科学, 2008, 29(4):35-37.
[27] 腊贵晓, 肖建国, 谢德平, 等. 烤烟育苗三种方式的育苗成本解析. 中国烟草学报, 2011, 17(4):74-77.
[28] 张久权, 余祥文, 凌爱芬, 等. 烤烟膜下小苗移栽育苗盘规格优选研究. 作物杂志, 2021(4):123-129.
[29] 刘晓慧, 尚静, 朱宗文, 等. 高温胁迫对丝瓜幼苗抗氧化酶活性及基因表达的影响. 分子植物育种, 2020, 18(24):7989-7996.
[30] 魏婧, 徐畅, 李可欣, 等. 超氧化物歧化酶的研究进展与植物抗逆性. 植物生理学报, 2020, 56(12):2571-2584.
[31] Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants,oxidative damage and oxygen deprivation stress:a review. Annals of Botany, 2003, 91(2):179-194.
doi: 10.1093/aob/mcf118
[32] 祁伟亮, 孙万仓, 马骊. 活性氧参与调控植物生长发育和胁迫应激响应机理的研究进展. 干旱地区农业研究, 2021, 39(3):69-81,193.
[33] Zeng B, Zhang Y, Zhang A, et al. Transcriptome profiling of two Dactylis glomerata L. cultivars with different tolerance in response to submergence stress. Phytochemistry, 2020, 175:112378.
doi: 10.1016/j.phytochem.2020.112378
[1] Wang Dequan, Liu Yang, Liu Jiang, Chen Keling, Wang Yi, Du Chuanyin, Du Yuhai, Ma Xinghua. Research Progress of Furrow and Ridge Rain-Harvesting Farming Technology and its Application Prospects in Flue-Cured Tobacco Production [J]. Crops, 2023, 39(1): 1-5.
[2] Zhang Yonggang, Ren Zhiguang, Xu Zhiqiang, Liu Jianguo, Zhang Xiaobing, Liu Huabing, Xia Chen, Cheng Changhe. Chemical Quality Evaluation of Flue-Cured Tobacco Based on Maximization of Deviation and BP Neural Network [J]. Crops, 2023, 39(1): 190-195.
[3] Zhang Panpan, Wu Xiong, Ji Jiangtao, Wang Xiaolin. Effects of EDTA on Growth and Physiological Characteristics of Cucumber Seedlings under Chromium Stress [J]. Crops, 2023, 39(1): 196-200.
[4] Li Diqin, Yao Shaoyun, Wang Qing, Yi Ke, Liu Yiyun, Tang Xiaoming, Peng Yuanyuan, Fu Changwu. Effects of Different Nitrogen Sources on the Growth and Development of Tobacco Seedlings [J]. Crops, 2023, 39(1): 201-206.
[5] Wang Yuan, Wang Jiming, Nian Fuzhao, Zheng Yuanxian, Xu Yinlian, Li Cuifen, Cui Yongquan, Zhang Qifu, Zhao Leifeng, Liao Xiaolin, He Yuansheng. Effects of Continuous Cropping with Rice Hull Biochar on Soil Physical and Chemical Properties and Growth of Flue-Cured Tobacco [J]. Crops, 2023, 39(1): 219-225.
[6] Chen Yan, Chen Qiang, He Yi, Yu Huiping, Gao Junyi, Zhao Erwei, Lu Yingang. Effects of Tobacco Planting Ecoregions, Varieties and Their Interactions on Polyphenol Content and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(6): 132-138.
[7] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[8] Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress [J]. Crops, 2022, 38(6): 234-240.
[9] Zhang Jianye, Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin. The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress [J]. Crops, 2022, 38(5): 167-173.
[10] Zhu Lin, Cao Xiang, Deng Xiaohua, Hu Risheng, Pei Xiaodong, Xiang Shipeng, Xiao Zhijun, Wang Weimin, Zhang Cheng, Jiang Zhimin. Characteristics of Water Loss and Pigment Degradation of Xiangyan No.7 Tobacco Leaves during Curing Process [J]. Crops, 2022, 38(5): 174-179.
[11] Jia Guotao, Zhang Junling, Wei Zhuangzhuang, Yuan Qishan, Wang Baolin, Wang Xiaoyu, Ma Shengtao, Yang Xinling, Zhang Ziying, Zhang Shiying, Jia Shiwei, Chen Yang, Liu Huimin. Research on the Regional Characteristics of Contents of Free Amino Acids in Flue-Cured Tobacco Based on Factor Analysis and Cluster Analysis [J]. Crops, 2022, 38(5): 208-214.
[12] Dong Yang. Study on the Physiological Response of Broomcorn Millet to Different Herbicides [J]. Crops, 2022, 38(5): 255-260.
[13] Sun Kai, Liang Long, Li Zhongbai. Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province [J]. Crops, 2022, 38(4): 146-153.
[14] Liu Xinya, Chen Xiaolong, Feng Yake, Liu Yang, Duan Weidong, An Xueqiang, Chen Fayuan, Cao Xingbing, Zhao Yuanyuan, Shi Hongzhi. Study on the Suitable Harvest Date of High Availability Upper Leaves of Flue-Cured Tobacco in Southwestern Guizhou [J]. Crops, 2022, 38(4): 227-235.
[15] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!