Crops ›› 2023, Vol. 39 ›› Issue (3): 148-153.doi: 10.16035/j.issn.1001-7283.2023.03.020

Previous Articles     Next Articles

Effects of Nitrogen Application Levels on Yield and Quality of Different Strong Gluten Wheat Varieties

Li Junzhi1,2(), Chang Xuhong1, Wang Demei1, Wang Yanjie1, Yang Yushuang1, Zhao Guangcai1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Liaoning Institute of Dryland Agriculture and Forestry Research, Chaoyang 122000, Liaoning, China
  • Received:2022-05-17 Revised:2022-07-06 Online:2023-06-15 Published:2023-06-16

Abstract:

Exploring the effects of nitrogen fertilizer treatment on the yield and quality of strong gluten wheat varieties, and provide technical reference for high quality and high yield cultivation of strong gluten wheat. Under the conditions of the field experiment, a split-plot experimental design was adopted, and three representative strong gluten wheat varieties, Gaoyou 2018 (A1), Shiluan 02-1 (A2) and Shiyou 20 (A3), were used as the experimental materials. Four nitrogen application levels, 0 (N0), 180 (N1), 240 (N2) and 300kg/ha (N3), were set to study the yield and its components, grain protein and its component contents. The results showed that under the same nitrogen application rate, the grain yield and 1000-grain weight of Shiyou 20 were higher than those of the other two varieties, and the bulk weight and grain protein content of Gaoyou 2018 were higher than those of the other two varieties. In different treatment combinations, with the increase of nitrogen fertilizer application rate, the number of spikes per unit area, the number of grains per spike, grain yield, the contents of grain protein, albumin, globulin and glutenin increased, the content of gliadin showed a trend of first increase and then decrease, but it was not conducive to the increase of 1000-grain weight and bulk weight; the grain yield was the highest in the N2 treatment, and the protein content was the highest in the N3 treatment. Shiyou 20 had the highest yield, Gaoyou 2018 had the highest grain protein content, and Shiluan 02-1 had better comprehensive performance. Therefore, under the condition of the nitrogen fertilizer topdressing ratio of 5:5, and the nitrogen fertilizer application in the jointing period, applying pure nitrogen 240kg/ha for Shiyou 20 and Gaoyou 2018 and applying pure nitrogen 180kg/ha for Shiluan 02-1 were beneficial to improve grain yield, protein and its component contents, which could reach the goal of synergistic improvement of yield and quality.

Key words: Nitrogen treatment, Strong gluten wheat, Yield, Quality

Table 1

Differences in agronomic traits and yield among strong gluten wheat varieties"

处理
Treatment
穗数
Number of spikes (×104/hm2)
穗粒数
Kernels per spike
千粒重
1000-grain weight (g)
容重
Bulk weight (g/L)
籽粒产量
Grain yield (kg/hm2)
A1 1051.33a 26.11a 31.32b 808.42a 7352.81b
A2 1002.00a 27.88a 31.11b 802.33b 7773.08ab
A3 922.00b 27.70a 33.42a 771.83c 8189.27a

Table 2

Effects of nitrogen fertilizer treatments on agronomic traits and yield of strong gluten wheat"

处理
Treatment
穗数
Number of spikes (×104/hm2)
穗粒数
Kernels per spike
千粒重
1000-grain weight (g)
容重
Bulk weight (g/L)
籽粒产量
Grain yield (kg/hm2)
N0 790.22b 25.52b 34.51a 808.89a 7464.00b
N1 1053.33a 26.31ab 31.40b 792.89b 7865.31ab
N2 1038.22a 28.96a 31.81b 792.61b 8004.20a
N3 1085.33a 28.12ab 30.07c 782.39c 7753.37ab

Table 3

Effects of nitrogen application rate and variety interaction on agronomic traits and yield of strong gluten wheat"

处理
Treatment
穗数
Number of spikes (×104/hm2)
穗粒数
Kernels per spike
千粒重
1000-grain weight (g)
容重
Bulk weight (g/L)
籽粒产量
Grain yield (kg/hm2)
N0A1 829.33ef 25.87abcd 33.90b 824.33a 7087.56f
N0A2 776.00f 23.93d 33.32bc 817.17b 7381.21ef
N0A3 765.33f 26.77abcd 36.32a 785.17c 7923.24bcde
N1A1 1126.67ab 26.23abcd 30.61efg 806.17a 7422.10def
N1A2 1069.33abc 27.10abcd 30.83ef 804.50a 7950.62abcde
N1A3 964.00cd 25.60bcd 32.77bcd 768.00b 8188.63ab
N2A1 1145.33a 27.63abcd 31.49de 806.67a 7533.21cdef
N2A2 1037.33abcd 31.10a 31.26de 798.50a 7985.17abcd
N2A3 932.00de 28.13abcd 32.67bcd 772.67b 8528.76a
N3A1 1104.00ab 24.70cd 29.28fg 796.50a 7368.35ef
N3A2 1125.33ab 29.37abcd 29.03g 789.17a 7775.27bcde
N3A3 1026.67bcd 30.30ab 31.90cde 761.50b 8116.45abc

Table 4

Differences of protein and its component contents among different strong gluten wheat varieties %"

处理
Treatment
蛋白质
Protein
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Gliadin
谷蛋白
Glutenin
A1 14.72a 2.77a 1.67a 3.95ab 5.81a
A2 14.55a 2.56b 1.53b 4.32a 4.95b
A3 13.14b 2.41b 1.44b 3.66b 4.92b

Table 5

Effects of nitrogen fertilizer treatments on the contents of protein and its components in strong gluten wheat %"

处理
Treatment
蛋白质
Protein
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Gliadin
谷蛋白
Glutenin
N0 12.38c 2.52b 1.34c 3.19b 4.43b
N1 14.51b 2.60b 1.63ab 3.93a 5.36a
N2 14.63b 2.46b 1.49bc 4.50a 5.46a
N3 15.03a 2.74a 1.73a 4.30a 5.64a

Fig.1

Effects of nitrogen application rate on grain protein contents of different varieties The different small letters indicate significant differences (P < 0.05)"

Table 6

Effects of nitrogen fertilizer treatment and variety interaction on protein and its components contents of strong gluten wheat %"

处理
Treatment
蛋白质
Protein
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Gliadin
谷蛋白
Glutenin
N0A1 13.35ef 2.77ab 1.51cde 3.63bcd 5.34cd
N0A2 12.89f 2.60bcd 1.32ef 3.15cd 4.15e
N0A3 10.91g 2.42cd 1.20f 2.77d 3.81e
N1A1 14.68bcd 2.66bc 1.77ab 3.64bcd 6.30a
N1A2 14.61bcd 2.49bcd 1.48cde 4.02abc 4.91d
N1A3 13.60ef 2.29d 1.35def 4.12abc 4.88d
N2A1 15.42ab 2.63bc 1.60abc 4.11abc 5.54bcd
N2A2 14.89bc 2.46bcd 1.51cde 5.03a 5.54bcd
N2A3 13.83de 2.40cd 1.48cde 3.41bcd 5.67abc
N3A1 15.44ab 3.00a 1.78ab 4.41ab 6.05ab
N3A2 15.83a 2.67bc 1.83a 5.08a 5.19cd
N3A3 14.22cde 2.54bcd 1.57bcd 4.36ab 5.31cd
[1] 赵广才, 常旭虹, 王德梅, 等. 小麦生产概况及其发展. 作物杂志, 2018(4):1-7.
[2] 孟智鹏, 张靖卓. 优质专用强筋和弱筋小麦生产现状、问题和对策——基于河南等省调研分析. 农学学报, 2019, 9(3):89-94.
doi: 10.11923/j.issn.2095-4050.cjas18120012
[3] 蒋赟, 王秀东. 我国小麦产业发展现状问题及对策浅析. 南方农业, 2020, 14(31):31-34,46.
[4] 赵广才. 小麦优质高产栽培理论与技术. 北京: 中国农业科学技术出版社, 2018:3-7.
[5] 杜久元, 周祥椿, 杨立荣. 不同小麦品种植株光合器官受损对单穗籽粒产量的影响及其补偿效应. 麦类作物学报, 2004, 24(1):35-39.
[6] Chen X, Zhang F, Römheld V, et al. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutrient Cycling in Agroecosystems, 2006, 74:91-98.
doi: 10.1007/s10705-005-1701-9
[7] Bosquet L C, Albrizio R, Araus J L, et al. Photosynthetic capacity of field-grown durum wheat under different N availabilities: a comparative study from leaf to canopy. Environmental and Experimental Botany, 2009, 67(1):145-152.
doi: 10.1016/j.envexpbot.2009.06.004
[8] 徐凤娇, 赵广才, 田奇卓, 等. 施氮量对不同品质类型小麦产量和加工品质的影响. 植物营养与肥料学报, 2012, 18(2):300-306.
[9] 孟维伟, 王东, 于振文. 施氮量对小麦氮代谢相关酶活性和籽粒蛋白质品质的影响. 植物营养与肥料学报, 2012, 18(1):10-17.
[10] 李廷亮, 谢英荷, 洪坚平, 等. 施氮量对晋南旱地冬小麦光合特性、产量及氮素利用的影响. 作物学报, 2013, 39(4):704-711.
[11] Abad A, L loveras J, Michelena A. Nitrogen fertilization and foliature effects on durum wheat yield and quality and on residual soilnitrate in irrigated Mediterranean conditions. Field Crops Research, 2004, 87(2):257-269.
doi: 10.1016/j.fcr.2003.11.007
[12] 刘霞, 李青常, 王振林, 等. 施氮水平对小麦籽粒蛋白质组分和加工品质的影响. 植物营养与肥料学报, 2007, 13(1):70-76.
[13] 郭丹丹, 刘哲文, 常旭虹, 等. 施氮处理对不同筋型小麦产量和品质的影响. 作物杂志, 2020(6):158-162.
[14] 赵广才, 常旭虹, 刘利华, 等. 施氮量对不同强筋小麦产量和加工品质的影响. 作物学报, 2006, 32(5):723-727.
[15] 郭明明, 赵广才, 郭文善, 等. 追氮时期和施钾量对小麦氮素吸收运转的调控. 植物营养与肥料学报, 2016, 22(3):590-597.
[16] 李亚静, 郭振清, 杨敏, 等. 施氮量对强筋小麦氮素积累和氮肥农学利用效率的影响. 麦类作物学报, 2020, 40(3):343-350.
[17] 苏珮, 蒋纪云, 王春虎. 小麦蛋白质组分的连续提取分离法及提取时间的选择. 河南职业技术师范学院学报, 1993, 21(2):1-4,19.
[18] 丁永刚, 陈立, 董金鑫, 等. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析. 作物学报, 2022, 48(12):3144-3154.
doi: 10.3724/SP.J.1006.2022.11117
[19] 李瑞奇, 李雁鸣, 何建兴, 等. 施氮量对冬小麦氮素利用和产量的影响. 麦类作物学报, 2011, 31(2):270-275.
[20] 张春明, 邱韩英, 张炬, 等. 不同供氮水平对机条播小麦氮素利用及产量的影响. 上海农业学报, 2016, 32(3):40-44.
[21] 侯丽丽, 王伟, 石书兵. 施氮量对不同品质类型春小麦产量和加工品质的影响. 新疆农业大学学报, 2013, 36(3):224-228.
[22] 陆增根, 戴廷波, 姜东, 等. 不同施氮水平和基追比对弱筋小麦籽粒产量和品质的影响. 麦类作物学报, 2006, 26(6):75-80.
[23] 吕冰, 范仲卿, 常旭虹, 等. 施氮量对2个粒色小麦产量及加工品质的影响. 核农学报, 2017, 31(6):1192-1199.
doi: 10.11869/j.issn.100-8551.2017.06.1192
[24] 朱统泉, 李栋业, 徐喜凤, 等. 不同施氮量对弱筋小麦产量与品质的影响. 土壤通报, 2005, 36(6):167-168.
[25] 赵广才, 常旭虹, 杨玉双, 等. 群体和氮肥运筹对冬小麦产量和蛋白质组分的影响. 植物营养与肥料学报, 2009, 15(1):16-23.
[26] 王月福, 于振文, 李尚霞, 等. 施氮量对小麦籽粒蛋白质含量及加工品质的影响. 中国农业科学, 2002, 35(9):1071-1078.
[1] Yuan Shuai, Chen Jiwang, Chen Pingping, Yi Zhenxie. Response of Yield and Cd Accumulation and Distribution in Main Crop and Ratooning Rice of Xiangzaoxian 45 to Irrigation Methods [J]. Crops, 2023, 39(3): 101-108.
[2] Zhang Guozhong, Li Juan, Li Yucai, Jin Shoulin, Hong Ruke, Huang Dajun, Pu Shihuang, Shi Congbo, Duan Zilin, Ma Di, Chen Lijuan. The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615 [J]. Crops, 2023, 39(3): 109-115.
[3] Ma Yihu, He Xianbiao, Chen Jian, Tang Xuejun, Wang Xuhui, He Haohao, Jin Yuqing, Qi Wen, Jiang Hailing, Zhou Cui. Effects of Seedling Ages on Grain Yield and Quality of High Quality Rice in Southeastern Zhejiang Province [J]. Crops, 2023, 39(3): 116-125.
[4] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[5] Xing Pipeng, Huang Yanfeng, Yi Siyuan, Lan Rujian, Pan Shenggang, Mo Zhaowen, Tian Hua, Duan Meiyang, Tang Xiangru. Effects of Foliar Ornithine Spraying at Heading Stage on Yield, Quality and 2-Acetyl-1-Pyrroline Biosynthesis of Fragrant Rice [J]. Crops, 2023, 39(3): 134-138.
[6] Wang Shuoli, Ding Songshuang, Wang Ronghao, Li Linlin, Wu Chuang, Wang Jian, Shi Xiangdong. Difference and Correlation Analysis of Mineral Element Contents and Sensory Qualities between Yunnan Province of China and Nicaragua Cigar Tobacco Leaves [J]. Crops, 2023, 39(3): 139-147.
[7] Song Chunyan, Wan Yunfan, Li Yu’e, Cai Andong, Hu Yanyan, Zhou Hui, Zhu Bo, Wang Bin. Relationships between Tiller Dynamic, Earbearing Tiller Rate and Yield of Double Cropping Rice under Elevated Temperature and CO2 Concentration [J]. Crops, 2023, 39(3): 159-166.
[8] Xu Qian, Zeng Xinyu, Xiao Bo, Li Baozheng, Zhang Xingduan. Effects of Foliar Fertilizer on Yield and Quality of Shoot Tip in Leaf-Vegetable Sweet Potato [J]. Crops, 2023, 39(3): 183-187.
[9] Jia Guotao, Wang Xiaoyu, Sun Yiming, Nie Cong, He Jingyu, Feng Yingjie, Ma Shengtao, Cui Ting, Cheng Dongxu, Yao Qian, Li Yue, Zhang Ziying, Wang Baolin, Liu Huimin. Analysis on the Relationship between Contents of Free Amino Acids and the Quality of Flue-Cured Tobacco in Eight Flavor Ecological Regions of China [J]. Crops, 2023, 39(3): 195-199.
[10] Luan Jinhua, Song Xinyang, Wang Lei, Sun Lili, Cheng Yanshuang, Dong Hao, Zhang Jia, Cheng Xiaoyi, Xu Hai. Differences Research in Salt Tolerance of New Rice Lines at Seedling Stage in Liaoning [J]. Crops, 2023, 39(3): 20-26.
[11] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[12] Luo Siwei, Shi Xiunan, Jia Yonghong, Zhang Jinshan, Wang Kai, Li Dandan, Wang Runqi, Dong Yanxue, Shi Shubing. Effects of Drip Irrigation Capillary Spacing and Drop Spacing on Photosynthesis, Dry matter Accumulation, and Yield Formation of Uniformly Sown Winter Wheat [J]. Crops, 2023, 39(3): 230-237.
[13] Shao Yang, Guo Yanping, Min Gengmei, Yang Xiaoming. Effects of Different Functional Herbicides on the Growth of Broad Bean and Field Weeds [J]. Crops, 2023, 39(3): 254-259.
[14] Zhang Haibin, Wu Xiaohua, Yu Meiling, Wang Xiaobing, Ye Jun, Cui Siyu, Li Yuanqing, Wang Zhanxian, Zhang Hongxu, Xue Wei, Li Yan, Cui Guohui, Zhao Xuanwei, Liu Juan. AMMI Model Analysis of Grain Yield of Wheat Varieties (Lines) in Inner Mongolia Regional Trials [J]. Crops, 2023, 39(3): 27-34.
[15] Li Jing, Li Pengcheng, He Yongbin, Xing Yaling, Meng Fanhua, Zhou Qian, Nan Ming. Multivariate Analysis and Comprehensive Evaluation of Main Characteristics of 16 Russian Winter Wheat Varieties [J]. Crops, 2023, 39(3): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!