Crops ›› 2023, Vol. 39 ›› Issue (3): 154-158.doi: 10.16035/j.issn.1001-7283.2023.03.021

Previous Articles     Next Articles

Effects of Ammonium Nitrogen and Nitrate Nitrogen Ratio on Growth and Ion Balance of Flue-Cured Tobacco

Zu Qingxue1(), Nie Zhongyang1, Lin Song1, Rao Chen1, Zhang Yifei1, Zhang Han2   

  1. 1Kaiyang Branch of Guizhou Tobacco Company, Kaiyang 550300, Guizhou, China
    2Agricultural College, Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2021-08-13 Revised:2023-03-24 Online:2023-06-15 Published:2023-06-16

Abstract:

In order to clarify the physiological response of the anion-cation balance of flue-cured tobacco seedlings to different ratios of ammonium nitrogen and nitrate nitrogen, a hydroponic experiment was conducted. Using Yunyan 87 as material, the effects of different ammonium and nitrate ratio treatments on the growth and anion-cation balance of tobacco seedlings were studied. The results showed that the increase in the ratio of nitrate nitrogen was beneficial to the growth of roots, stems and leaves of tobacco seedling. The contents of malic acid and oxalic acid under the total nitrate treatment were significantly higher than that of other treatments, while the content of citric acid under the ratio of ammonium to nitrate 25:75 was not significantly different from that of the total nitrate treatment; the contents of cations (K+, Ca2+, Mg2+) increased with the increase of the ratio of nitrate nitrogen, while the charges of NO3- and SO42- under 50:50 treatment reached the maximum, which were 0.06 and 1.03mmol/g, respectively, and Cl- content under 75:25 treatment was significantly higher than those of other treatments, H2PO4- content increased with the increase of nitrate nitrogen and then remained unchanged, with a maximum value of 0.20mmol/g. With the increase of nitrate nitrogen ratio, the anion-cation balance showed a trend of alkalization first and then acidification. Anion-cation balance of total nitrate treatment was the worst (3.43mmol/g), but there was no ion imbalance. Considering the effects of nitrogen forms on tobacco seedling growth and ion balance, the 0:100 ratio of ammonium to nitrate was the best.

Key words: Ammonium-nitrate ratio, Tobacco seedling, Growth, Balance of anion-cation

Table 1

Preparation of nutrient solution with different ratios of ammonium to nitrate mg/L"

试剂
Reagent
铵硝比Ammonium nitrate ratio
100:0 75:25 50:50 25:75 0:100
(NH4)2SO4 660 495 330 165 0
CaCl2 555 416.3 278 139 0
Ca(NO3)2·4H2O 0 295 590 885 1180
其他试剂
Other reagents
KH2PO4 175.48,MgSO4·7H2O 410,ZnSO4·7H2O 0.22,CuSO4·5H2O 0.08,MnSO4·H2O 1.54,K2SO4 333.9,NaB4O7·10H2O 3.96,(NH4)6Mo7O24 0.09,FeSO4·7H2O 5.57,Na2EDTA 7.45

Table 2

Effects of different ratios of ammonium to nitrate on fresh and dry weight of various parts of tobacco plants at seedling stage"

处理
Treatment
鲜质量Fresh weight (g) 干质量Dry weight (g) 含水率
Moisture
content (%)

Root

Stem

Leaf
总鲜质量
Total fresh weight

Root

Stem

Leaf
总干质量
Total dry weight (g)
100:0 3.91c 6.39d 4.48d 14.77d 0.32c 0.68b 0.63c 1.62d 89.03c
75:25 5.94bc 11.80c 14.41c 32.15c 0.59b 0.72b 1.38bc 2.69c 91.63b
50:50 8.60ab 12.92c 20.06b 41.58c 0.63b 1.05ab 1.81ab 3.49b 91.61b
25:75 10.30a 15.44b 23.62b 49.35b 0.95a 1.57a 2.06ab 4.58a 90.72b
0:100 11.77a 26.10a 37.22a 75.09a 1.06a 1.74a 2.37a 5.16a 93.13a

Table 3

Effects of different ratios of ammonium to nitrate on organic acid content of tobacco leaves mg/g"

处理
Treatment
苹果酸
Malic acid
草酸
Oxalic acid
柠檬酸
Citric acid
总有机酸
Total organic acid
100:0 7.33b 1.45d 10.97d 19.75d
75:25 3.59d 1.98d 13.00c 18.57d
50:50 5.76c 2.66c 17.36b 25.78c
25:75 7.13b 4.01b 21.66a 32.80b
0:100 15.52a 9.32a 19.80a 44.64a

Table 4

Effects of different ratios of ammonium to nitrate on the charge amount of ion absorption of tobacco leaves mmol/g"

处理Treatment K+ Ca2+ Mg2+ 总阳离子Total cation NO3- H2PO4- Cl- SO42- 总无机阴离子Total inorganic anion
100:0 0.38c 0.17c 0.11c 0.66c 0.01c 0.05c 0.43cd 0.15b 0.64c
75:25 1.46b 0.60bc 0.36bc 2.42bc 0.04b 0.14b 1.53a 0.41b 2.12a
50:50 1.92b 0.74b 0.45b 3.11b 0.06a 0.17ab 1.03b 1.03a 2.29a
25:75 2.26b 0.97b 0.58b 3.81b 0.06a 0.20a 0.72bc 0.84a 1.82b
0:100 3.51a 1.84a 1.03a 6.38a 0.06a 0.20a 0.17d 0.45b 0.88c

Table 5

Effects of different ratios of ammonium to nitrate on the balance of anion and cation in the whole leaves of tobacco seedlings mmol/g"

处理
Treatment
阳离子
含量
Cation
content
无机阴
离子含量
Inorganic anion
content
有机阴
离子含量
Organic anion
content
阴阳离子平衡
Anion-cation
balance
100:0 0.65c 0.63b 0.24d -0.22
75:25 2.42bc 2.12a 0.50d -0.20
50:50 3.11b 2.31a 0.96c -0.16
25:75 3.81b 1.82b 1.37b 0.62
0:100 6.37a 0.87c 2.07a 3.43
[1] 彭奎. 不同中微量元素配施对烤烟生长发育和产质量的影响. 安徽农业科学, 2020, 48(6):140-142,178.
[2] 张喜峰, 张立新, 高梅, 等. 不同氮肥形态和腐殖酸对陕西典型生态区烤烟化学成分和产质量的影响. 草业学报, 2013, 22(6):60-67.
doi: 10.11686/cyxb20130608
[3] Haynes R J, Goh K M. Ammonium and nitrate nutrition of plants. Biological Review, 1978, 53:465-510.
[4] Pearson J, Stewart G R. The deposition of atmospheric ammonia and its effect on plants. New Phytologist, 1993, 125:283-305.
doi: 10.1111/j.1469-8137.1993.tb03882.x pmid: 33874497
[5] 王蒙, 王喜枝, 刘世亮, 等. 铵态氮/硝态氮配比对豫中烟区烤烟生长及品质调控研究. 河南农业科学, 2016, 45(4):37-42.
[6] 王利超, 王涵, 朴世领, 等. 铵硝氮配比对烤烟生长生理及产量和品质的影响. 西北农林科技大学学报(自然科学版), 2012, 40(12):136-144.
[7] 刘晓云, 刘燕, 祖庆学, 等. 不同品种烤烟腺毛分泌物及部分有机酸、高级脂肪酸的比较分析. 中国农业科技导报, 2020, 22(3):46-55.
doi: 10.13304/j.nykjdb.2019.0373
[8] 施丰成, 邓发达, 朱立军, 等. 烤烟中草酸、苹果酸和柠檬酸含量的分析研究. 中国烟草学报, 2010, 16(1):6-10.
[9] 邱尧, 周冀衡, 黄劭理, 等. 根区温度与氮素形态互作对烟株生物量和烟碱积累的影响. 烟草科技, 2015, 48(3):19-22,52.
[10] 黄丹, 杨富文, 刘琳, 等. 氮及氮素形态对烤烟叶片叶绿素光合荧光参数的影响. 作物杂志, 2021(1):150-159.
[11] Majerowicz N, Kerbauy G B, Nievola C C, et al. Growth and nitrogen metabolism of Catasetum fimbriatum (Orchidaceae) grown with different nitrogen sources. Environmental and Experimental Botany, 2000, 44:195-206.
pmid: 11064040
[12] Pace C R, Vann M C, Fisher L R, et al. Implications of chloride application rate and nitrogen fertilizer source to flue-cured tobacco. Agronomy Journal, 2020, 112(4):2916-2927.
doi: 10.1002/agj2.v112.4
[13] 张小花, 罗稳业, 杨永吉, 等. 不同硝态氮和铵态氮配比对烤烟产量、主要化学成分的影响. 江西农业, 2018(24):30-32.
[14] 谢晋, 严玛丽, 陈建军, 等. 不同铵态氮硝态氮配比对烤烟产量、质量及其主要化学成分的影响. 植物营养与肥料学报, 2014, 20(4):1030-1037.
[15] Engels C, Marschner H. Influence of the form of nitrogen supply on root uptake and translocation of cations in the xylem exudate of maize (Zea mays L.). Journal of Experimental Botany, 1993, 44(11):1695-1701.
doi: 10.1093/jxb/44.11.1695
[16] 中国科学院上海植物生理研究所, 上海市植物生理学会. 现代技术生理实验技术. 北京: 科学出版社, 1999.
[17] 侯建国, 陈文梅. 在线自动配标-离子色谱法同时测定饮用水中7种阴离子的含量. 中国无机分析化学, 2020, 10(1):54-57.
[18] 刘百战, 徐亮, 詹建波, 等. 云南烤烟中非挥发性有机酸及某些高级脂肪酸的分析. 中国烟草科学, 1999, 21(2):3-5.
[19] Haynes R J. Active ion uptake and maintenance of cation-anion balance: A critical examination of their role in regulating rhizosphere pH. Plant and Soil, 1990, 126(2):247-264.
doi: 10.1007/BF00012828
[20] 邢瑶, 孙泽东, 马兴华, 等. 氮素形态对烟苗根系生长及碳、氮积累的影响. 中国烟草科学, 2015, 36(5):13-18.
[21] 邢瑶, 马兴华. 氮素形态对烟苗根系生长及氮素利用的影响. 中国烟草学报, 2016, 22(4):52-61.
[22] 王晓凤. 不同供应时期氮素形态对烤烟生长及养分吸收的影响. 湖北农业科学, 2012, 51(4):679-684.
[23] 汪建飞, 沈其荣, 周毅, 等. 不同铵硝比对菠菜有机酸和淀粉含量的影响. 中国农业科学, 2008, 41(4):1100-1107.
[24] Kirkby E A, Knight A H. Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation, and cation-anion balance in whole tomato plants. Plant Physiology, 1977, 60(3):349-353.
doi: 10.1104/pp.60.3.349 pmid: 16660091
[25] 陈鹏程, 顾志敏. 植物调控盐胁迫下离子动态平衡. 安徽农业科学, 2015, 43(20):16-18,22.
[26] 李先婷. 盐胁迫对豌豆幼苗离子平衡和根际pH变化的影响. 兰州:兰州大学, 2013.
[27] 刘梅, 郑青松, 刘兆普, 等. 盐胁迫下氮素形态对油菜和水稻幼苗离子运输和分布的影响. 植物营养与肥料学报, 2015, 21(1):181-189.
[28] Galloway J. Acid deposition: Perspectives in time and space. Water,Air and Soil Pollution, 1995, 85(1):15-24.
doi: 10.1007/BF00483685
[29] 邢瑶, 马兴华. 氮素形态对植物生长影响的研究进展. 中国农业科技导报, 2015, 17(2):109-117.
[30] Chan C W M, Schorrak L M, Jr Smith R K, et al. A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiology, 2003, 132 (2):728-731.
pmid: 12805601
[31] Song W Y, Choi K S, Alexis D A, et al. Brassica juncea plant cadmium resistance 1 protein (BjPCR1) facilitates the radial transport of calcium in the root. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (49):19808-19813.
[32] White P J, Broadley M R. Calcium in plants. Annals of Botany, 2003, 92(4):487-511.
doi: 10.1093/aob/mcg164 pmid: 12933363
[33] 黄文浩, 秦荣耀. 不同钙素水平对厚皮甜瓜叶片光合作用和保护酶活性的影响. 广西植物, 2005, 25(1):77-82.
[34] 相辉, 张玲, 陈进. 介质中不同Ca2+浓度对五种榕树幼苗钙含量的影响. 广西植物, 2003, 23(2):165-168.
[35] 李青云, 葛会波, 胡淑明, 等. 钠盐和钙盐胁迫对草莓光合作用的影响. 西北植物学报, 2006, 26(8):1713-1717.
[36] 罗渝. 重庆市黔江区植烟土壤养分现状评价. 重庆:西南大学, 2020.
[37] 岳小红, 曹靖, 耿杰, 等. 盐分胁迫对啤酒大麦幼苗生长、离子平衡和根际pH变化的影响. 生态学报, 2018, 38(20):7373-7380.
[1] Wang Yandan, Gao Xin, Peng Jinjian, Tang Feiyu. Comparison of Carbohydrate and Nitrogen Contents in Vegetative Organs between Early- and Middle-Maturing Cotton Lines and the Relationships to Dry Matter Accumulation [J]. Crops, 2023, 39(2): 106-114.
[2] Han Yuhuan, Liu Chen, Yang Long, Yu Tao. Effects of Topping Period and Number of Remained Leaves on Growth and Development of Upper Leaves of Flue-Cured Tobacco in Shandong Province [J]. Crops, 2023, 39(2): 157-162.
[3] Zhang Yifei, Zu Qingxue, Nie Zhongyang, Lin Song, Rao Chen, Cheng Zhijun. Research on Contribution of Glutamic Acid to Nitrogen Nutrition and Physiological Characteristics of Flue-Cured Tobacco [J]. Crops, 2023, 39(2): 186-192.
[4] Chen Dong, Zou Jing, Guo Ganggang, Dai Wendian, Song Shaoguang, Huang Ying. Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings [J]. Crops, 2023, 39(1): 129-135.
[5] Zhang Lixia, Guo Xiaoyan, Shi Pengfei, Nie Liangpeng, Ling Jingwei, Shen Peilin, Ding Li, Zhang Lin, Lü Yuhu, Pan Ziliang. Effects of Drought Stress on Growth, Yield and Benefits of Kenaf in Vigorous Growing Period [J]. Crops, 2023, 39(1): 184-189.
[6] Li Diqin, Yao Shaoyun, Wang Qing, Yi Ke, Liu Yiyun, Tang Xiaoming, Peng Yuanyuan, Fu Changwu. Effects of Different Nitrogen Sources on the Growth and Development of Tobacco Seedlings [J]. Crops, 2023, 39(1): 201-206.
[7] Wang Yuan, Wang Jiming, Nian Fuzhao, Zheng Yuanxian, Xu Yinlian, Li Cuifen, Cui Yongquan, Zhang Qifu, Zhao Leifeng, Liao Xiaolin, He Yuansheng. Effects of Continuous Cropping with Rice Hull Biochar on Soil Physical and Chemical Properties and Growth of Flue-Cured Tobacco [J]. Crops, 2023, 39(1): 219-225.
[8] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[9] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[10] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[11] Feng Yu, Xing Baolong. Research on the Growth Characteristics and Forage Quality of Different Cowpea Varieties in Cold Region [J]. Crops, 2022, 38(6): 220-225.
[12] Li Yuexian, Duan Chunfang, Jiang Tailing, Liu Qian, Yan Wei, Xiong Xiankun, Zhang Linhui, Song Jiming, Shen Shaobin, Zhou Yingchun, Liu Guanghua. The Influences of Different Altitudes Gradients on Growth and Rhizome Quality of Cassava in Yunnan Province [J]. Crops, 2022, 38(5): 153-159.
[13] Du Fu, Xia Maolin, Liu Xinyuan, Yu Zhaojin, Zhang Zhan, Liu Yunfei, Ji Xiaoming. Effective Effects of Acrylamide/Carboxymethyl Cellulose/Biochar Composite Hydrogel on Cadmium Stress in Tobacco Seedlings [J]. Crops, 2022, 38(4): 138-145.
[14] Li Diqin, Peng Yuanyuan, Wang Yan, Li Sijun, Peng Tianwei, Wang Qing, Li Qiang, Xie Huiya. Response of Tobacco Seedling Growth and Development to Combined Application of Brassinolide and Microbial Agents [J]. Crops, 2022, 38(4): 167-171.
[15] Dong Weixin, Zhang Yuechen. Effects of Water-Nitrogen Interaction on Physiological Parameters and Yield Formation of Different Wheat Varieties [J]. Crops, 2022, 38(3): 125-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!