Crops ›› 2023, Vol. 39 ›› Issue (3): 51-57.doi: 10.16035/j.issn.1001-7283.2023.03.007

Previous Articles     Next Articles

Dissecting the Genetic Basis of Flag Leaf in Maize-Teosinte Introgression Line Population

Gao Mutian1(), Qiu Guanjie1, Zhu Tongtong1, Li Ruilian1,2,3, Deng Min1,2,3, Luo Hongbing1,2,3, Huang Cheng1,2,3()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Key Laboratory of the Ministry of Education for Crop Physiology and Molecular Biology, Changsha 410128, Hunan, China
    3Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, Hunan, China
  • Received:2022-03-29 Revised:2022-04-06 Online:2023-06-15 Published:2023-06-16

Abstract:

Maize flag leaves are extended from the tips of ear husks, which are not only affected by environmental factors such as climate and soil, but also controlled by genetic factors. Using a large population of 866 maize-teosinte introgression lines that had been genotyped with 19 838 SNP markers, we performed a QTL mapping for maize flag leaf by applying the multiple QTL model in R/qtl. The results showed that a total of nine QTLs for maize flag leaf were located on chromosome 1, 2, 3, 4, 5, 7 and 8. All nine loci attributed to 30.94% of the phenotypic variation, with the phenotypic contribution rate and additive effect of each QTL ranged from 1.76% to 11.51% and from -0.03 to 0.12, respectively, indicating that the maize flag leaf was a quantitative trait controlled by a number of loci. Pearson correlation coefficient analysis showed that maize flag leaf was significantly positively correlated with plant height, ear height, stem length, and chlorophyll content, and it was significantly negatively correlated with 100-seed weight, seed width, and seed thickness. Further analysis of candidate genes for the largest effect QTL (qFL3-1) using the transcriptome data, five possible candidate genes were screened out.

Key words: Maize, Teosinte, Introgression line population, Flag leaf, Genetic basis

Fig.1

Phenotypic analysis of the flag leaf in the introgression line population (a) flag leaf in representative lines; bar: 10cm. (b) distribution of the proportion of flag leaf"

Fig.2

Correlation analysis between flag leaf and other traits IL: internode length; CC: chlorophyll content; EH: ear height; PH: plant height; SL: seed length; SD: stem diameter; SGR: seed germination rate; ST: seed thick; SW: seed width; HSW: 100-seed weight; red represents positive correlation; blue represents negative correlation;“*”: significance level at P < 0.05;“**”: significance level at P < 0.01"

Fig.3

QTL mapping for flag leaf in the introgression line population Different QTLs on the same chromosome are indicated by different colors; the horizontal red dotted line represents the LOD threshold of a significant QTL"

Table 1

QTL mapping results for flag leaf"

QTLs 染色体
Chromosome
标记区间
Marker interval
位置
Position (cM)
LOD值
LOD value
加性效应
Additive effect
显性效应
Dominant effect
贡献率
Contribution rate (%)
qFL1-1 1 m00191~m01743 49.98 7.23 0.04 0.04 2.86
qFL1-2 1 m04426~m05704 89.19 6.95 0.05 0.02 2.75
qFL2-1 2 m08696~m12985 106.05 4.74 0.05 -0.01 1.86
qFL3-1 3 m16430~m16819 73.50 27.49 0.12 0.02 11.51
qFL4-1 4 m21495~m22749 79.50 8.03 0.07 -0.06 3.18
qFL5-1 5 m25472~m25799 28.56 5.81 0.05 0.00 2.29
qFL5-2 5 m29042~m29724 89.22 4.49 0.05 0.00 1.76
qFL7-1 7 m39972~m40321 119.97 5.25 -0.03 -0.03 2.07
qFL8-1 8 m42951~m44940 106.04 4.93 -0.04 0.02 1.94

Fig.4

Candidate gene analysis of qFL3-1 (a) LOD plots at qFL3-1; the horizontal red dotted line represents the LOD threshold of a significant QTL; the blue shaded area represents the confidence interval at qFL3-1. (b) Schematic diagram of genes within the confidence interval. (c) Expression heat map of genes within the confidence interval"

Table 2

Candidate genes of qFL3-1"

基因编号
Gene ID
染色体
Chromosome
基因起始位置
Gene starting position (bp)
基因终止位置
Gene end position (bp)
功能注释
Functional annotation
Zm00001d042099 3 150 690 594 150 691 502 谷胱甘肽S-转移酶
Zm00001d042104 3 150 759 060 150 760 119 谷胱甘肽S-转移酶
Zm00001d042117 3 151 572 267 151 577 836 吡咯啉-5-羧酸还原酶
Zm00001d042134 3 152 750 251 152 755 325 氨基酸通透酶
Zm00001d042135 3 152 759 924 152 768 979 氨基酸通透酶
[1] 徐文伟, 曹镇北. 我国玉米地方品种剑叶长度的初步观察. 中国种业, 1986(3):14-15.
[2] Ji H C, Lee H B, Brewbaker J L. Inheritance of long husk leaves in maize. Journal of the Faculty of Agriculture, 2008, 53(2):379-384.
[3] Cantrell R G, Geadelmann J L. Contribution of husk leaves to maize grain yield. Crop Science, 1981, 21(4):544-546.
doi: 10.2135/cropsci1981.0011183X002100040017x
[4] Sawada O, Ito J, Fujita K. Characteristics of photosynthesis and translocation of 13C-labelled photosynthate in husk leaves of sweet corn. Crop Science, 1995, 35(2):480-485.
doi: 10.2135/cropsci1995.0011183X003500020033x
[5] Cantrell R G, Geadelmann J L. Inheritance of husk leaves in maize. Crop Science, 1981, 21(4):541-544.
doi: 10.2135/cropsci1981.0011183X002100040016x
[6] Matsuoka Y, Vigouroux Y, Goodman M M, et al. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9):6080-6084.
[7] Piperno D R, Ranere A J, Holst I, et al. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13):5019-5024.
[8] Van Heerwaarden J, Doebley J, Briggs W H, et al. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3):1088-1092.
[9] Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127(7):1309-1321.
doi: 10.1016/j.cell.2006.12.006 pmid: 17190597
[10] Studer A, Zhao Q, Ross-Ibarra J, et al. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 2011, 43(11):1160-1163.
doi: 10.1038/ng.942
[11] Wang H, Nussbaum-Wagler T, Li B, et al. The origin of the naked grains of maize. Nature, 2005, 436(7051):714-719.
doi: 10.1038/nature03863
[12] Wright S I, Bi I V, Schroeder S G, et al. The effects of artificial selection on the maize genome. Science, 2005, 308(5726):1310-1314.
doi: 10.1126/science.1107891 pmid: 15919994
[13] Wills D M, Whipple C J, Takuno S, et al. From many,one:genetic control of prolificacy during maize domestication. PLoS Genetics, 2013, 9(6):e1003604.
doi: 10.1371/journal.pgen.1003604
[14] Huang C, Chen Q Y, Xu G H, et al. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. Journal of Integrative Plant Biology, 2016, 58(1):81-90.
doi: 10.1111/jipb.12358
[15] McCouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14:11-13.
[16] Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[17] 柳志华, 肖仁杰, 徐莹, 等. 利用大刍草渗入系群体定位玉米株高和穗位高QTL. 湖南农业大学学报(自然科学版), 2020, 46(4):381-385.
[18] 李芳, 柳志华, 胡锦祥, 等. 利用玉米-大刍草渗入系群体解析玉米茎长和茎粗的遗传基础. 农业生物技术学报, 2021, 29(2):216-223.
[19] 胡锦祥, 肖仁杰, 柳志华, 等. 基于玉米野生近缘种大刍草渗入系群体的出苗率QTL定位分析. 植物遗传资源学报, 2020, 21(6):1561-1567.
doi: 10.13430/j.cnki.jpgr.20200603001
[20] 肖仁杰, 柳志华, 胡锦祥, 等. 玉米穗位叶叶绿素含量的QTL定位分析. 分子植物育种, 2021, 19(14):4703-4707.
[21] Xu G H, Wang X F, Huang C, et al. Complex genetic architecture underlies maize tassel domestication. New Phytologist, 2017, 214(2):852-864.
doi: 10.1111/nph.14400 pmid: 28067953
[22] Vaish S, Gupta D, Mehrotra R, et al. Glutathione S-transferase: A versatile protein family. 3 Biotech, 2020, 10(7):321.
doi: 10.1007/s13205-020-02312-3 pmid: 32656054
[23] Ruszkowski M, Nocek B, Forlani G, et al. The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants. Frontiers in Plant Science, 2015, 6:869.
doi: 10.3389/fpls.2015.00869 pmid: 26579138
[24] Mattioli R, Marchese D, D’Angeli S, et al. Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Molecular Biology, 2008, 66(3):277-288.
doi: 10.1007/s11103-007-9269-1 pmid: 18060533
[25] Mattioli R, Costantino P, Trovato M. Proline accumulation in plants: not only stress. Plant Signaling & Behavior, 2009, 4(11):1016-1018.
[26] Funck D, Winter G, Baumgarten L, et al. Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biology, 2012, 12(1):1-12.
doi: 10.1186/1471-2229-12-1
[27] Okumoto S, Koch W, Tegeder M, et al. Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. Journal of Experimental Botany, 2004, 55(406):2155-2168.
pmid: 15361541
[1] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[2] Chang Qing, Li Lijun, Qu Jiahui, Zhang Yanli, Han Dongyu, Zhao Xinyao. Yield Advantage and Nitrogen Use Efficiency of Forage Maize-Rape Intercropping Following Wheat in Tumed Plain [J]. Crops, 2023, 39(3): 167-174.
[3] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[4] Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Qu Haitao, Li Fulin, Zhang Shuqin, Li Guangfa. Genetic Analysis of Color Traits in Sheath, Silk, Anther and Cob of Isolated Population Based on Maize DH Lines [J]. Crops, 2023, 39(3): 75-79.
[5] Zhang Panpan, Li Chuan, Zhang Meiwei, Zhao Xia, Huang Lu, Liu Jingbao, Qiao Jiangfang. Effects of Nitrification Inhibitor on the Nitrogen Concentration and Yield in Summer Maize Plants and Soil under Reduced Nitrogen Application [J]. Crops, 2023, 39(2): 145-150.
[6] Cui Shuna, Wang Ye, Lu Yuqing, Pan Jinbao, Zhang Qiuzhi. Correlation and Path Analysis of Three Ear Leaves on Yield in Maize [J]. Crops, 2023, 39(2): 201-206.
[7] Meng Yaxuan, Yao Xuhang, Zhou Baoyuan, Liu Yinghui, Yuan Jincheng, Ma Wei, Zhao Ming. Research Progress on Mixed Silage of Zea mays [J]. Crops, 2023, 39(2): 24-29.
[8] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[9] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[10] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[11] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[12] Li Long, Xiao Rang, Zhang Yongling. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Seed Maize Yield and Economic Benefit [J]. Crops, 2022, 38(5): 111-117.
[13] Li Yanlu, Wang Junpeng, Yu Xinzhi, Wei Honglei, Chen Qiyu, Zhao Hongxiang, Xu Chen, Bian Shaofeng, Zhang Zhian. Effects of Mulching Different Plastic Films on Accumulation and Distribution of Dry Matter and Nitrogen in Maize in Cold and Cool Areas [J]. Crops, 2022, 38(5): 124-129.
[14] Zhang Jianye, Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin. The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress [J]. Crops, 2022, 38(5): 167-173.
[15] Zhou Chao, Zhang Tiantian, Yang Li’na, Zhang Yong, Ma Chong, Dai Weicheng, Wu Cuixia, Song Min. Systemic Distribution of Flonicamid in Maize and Its Activity Effect against Rhopalosiphum maidis with Root Absorption [J]. Crops, 2022, 38(5): 261-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!