Crops ›› 2024, Vol. 40 ›› Issue (3): 163-167.doi: 10.16035/j.issn.1001-7283.2024.03.021

Previous Articles     Next Articles

Effects of Combined Application of Organic and Inorganic Fertilizers on Yield and Quality of Rapeseed in Sichuan

Yi Qin(), Huang Miao, Yang Guotao, Hu Yungao, Chen Hong, Wang Xuechun()   

  1. College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • Received:2023-05-05 Revised:2023-09-16 Online:2024-06-15 Published:2024-06-18

Abstract:

In order to achieve high quality and high yield of rapeseed, different schemes of organic and inorganic nitrogen fertilizer were set up in this experiment for providing theoretical basis for reasonable fertilization system of oil-rice rotation mode in Sichuan area. In this study, Mianyou 309 was used as the test material from 2020 to 2022. Five treatments of Y1 to Y5 (replacement amount of organic fertilizer was 20%, 30%, 40%, 50% and 0%, respectively) were set up in rape season to analyze the changes of rape yield, yield components, grain quality and economic benefits. The results showed that, organic and inorganic fertilizer application had significant effects on the number of main inflorescence grains, yield and its components, and the increase effect and economic benefit of rapeseed were the best with Y2 treatment. The combined application of organic fertilizer could increase the contents of erucic acid and glucosinolates, which had a tendency to increase the oil content of Mianyou 309. The contents of beneficial component of the Y1, Y2 and Y3 treatments such as linolenic acid and arachidonic acid were increased.

Key words: Organic fertilizer, Inorganic fertilizer, Rape, Yield, Quality

Table 1

Fertilization scheme in rape season %"

处理
Treatment
有机氮肥
Organic nitrogen fertilizer
无机氮肥
Inorganic nitrogen fertilizer
Y1 20 80
Y2 30 70
Y3 40 60
Y4 50 50
CK 0 100

Table 2

Rape yield and its component factors with different treatments"

年份
Year
处理
Treatment
主序粒数
Number of main
inflorescence grains
一级分枝粒数
Number of primary
branch grains
二级分枝粒数
Number of secondary
branch grains
角粒数
Grain
number
per pod
每株角果数
Number of
pods
per plant
理论产量
Theoretical
yield
(kg/hm2)
实际产量
Actual
yield
(kg/hm2)
粒数
Grain
number
千粒重
1000-grain
weight (g)
粒数
Grain
number
千粒重
1000-grain
weight (g)
粒数
Grain
number
千粒重
1000-grain
weight (g)
2021 Y1 1334.17b 3.71a 3974.67ab 3.76a 1524.33a 3.83bc 16.05b 420.83a 3718.02b 2351.18d
Y2 1677.17a 3.84a 4107.17ab 3.75a 1207.83ab 3.87ab 17.34a 414.67ab 3961.18a 2921.40a
Y3 1424.33b 3.81a 3789.67b 3.74a 1106.67b 3.74c 16.50b 396.50b 3603.85bc 2641.35b
Y4 1107.33c 3.74a 3840.67ab 3.77a 910.17c 3.88ab 16.37b 364.33c 3282.43d 2411.21c
CK 1238.83bc 3.70a 4164.00a 3.84a 778.17d 3.93a 16.39b 397.33b 3582.42cd 2466.23c
2022 Y1 1814.33a 3.77a 3952.33c 3.85a 1361.00a 3.70a 16.41b 438.33b 3960.15b 3434.15b
Y2 1803.33a 3.80a 4931.67a 3.77ab 1385.33a 3.86a 17.14a 490.00a 4185.49a 3859.40a
Y3 1137.00b 3.59a 4145.67c 3.70b 1117.00b 3.80a 16.48b 389.00c 3531.56c 3097.85bc
Y4 955.00b 3.80a 4360.33b 3.80a 1059.33b 3.80a 16.45b 382.12c 3525.07c 2429.75d
CK 998.33b 3.76a 4777.33a 3.81a 965.67b 3.74a 16.19b 422.67b 3768.61b 2843.90c
平均
Average
Y1 1574.25a 3.74a 3963.50c 3.80a 1342.67a 3.77a 16.23b 429.58a 3839.08b 2892.66b
Y2 1740.25a 3.82a 4286.08ab 3.76ab 1296.58a 3.87a 17.24a 429.00a 4073.33a 3390.40a
Y3 1280.67b 3.70a 3967.67c 3.72b 1111.83b 3.77a 16.49b 392.75bc 3567.70c 2869.60b
Y4 1031.17c 3.77a 4100.50bc 3.79ab 984.75bc 3.84a 16.41b 376.50c 3403.75d 2420.48d
CK 1118.58bc 3.73a 4470.67a 3.83a 871.92c 3.84a 16.29b 409.83ab 3675.93c 2655.07c
T 44.95** 2.07 20.46** 2.63 28.00** 11.06** 10.83** 31.45** 38.07** 30.21**
Y 0.14 0.00 72.82** 0.00 10.98** 0.00 0.00 32.58** 19.51** 15.43**
T×Y 12.67** 0.00 6.99** 0.00 1.19 0.00 0.88 7.98** 2.61 2.36

Table 3

Rape seed quality of different treatments"

年份
Year
处理
Treatment
芥酸
Erucic
acid (%)
硫甙
Thiosin
(μmol/g)
蛋白质
Protein
(%)
含油量
Oil
content (%)
棕榈酸
Palmitic
acid (%)
硬脂酸
Stearic
acid (%)
油酸
Oleic
acid (%)
亚油酸
Linoleic
acid (%)
亚麻酸
Linolenic
acid (%)
花生烯酸
Arachidonic
acid (%)
2021 Y1 43.04a 80.51bc 20.66a 45.61a 3.48a 1.89a 12.76a 11.79a 8.46a 18.60a
Y2 44.08a 83.98ab 20.71a 46.69a 3.53a 1.88a 13.52a 12.03a 8.66a 18.68a
Y3 42.18ab 84.12ab 20.45a 45.37a 3.63a 1.86a 12.29a 12.36a 8.66a 18.20a
Y4 42.61a 86.16a 20.77a 46.61a 3.40a 1.86a 15.04a 12.44a 8.83a 18.08a
CK 38.65b 76.17c 22.16a 44.83a 3.55a 1.84a 16.12a 12.68a 8.76a 16.19b
2022 Y1 37.21a 90.69a 26.69a 39.82a 3.52a 1.87ab 15.37b 11.68ab 9.04bc 16.54b
Y2 38.80a 82.66c 26.74a 40.95a 3.46a 1.80bc 13.18b 10.85bc 9.02bc 17.43ab
Y3 39.66a 85.85bc 26.45a 40.60a 3.54a 1.86ab 14.11b 10.06c 9.61ab 18.46a
Y4 32.46b 88.43ab 26.31a 40.09a 3.62a 1.89a 21.80a 12.53a 8.68c 14.73c
CK 38.46a 87.57ab 27.32a 39.04a 3.58a 1.77c 15.37b 9.44c 9.72a 17.69ab
平均
Average
Y1 39.91ab 88.42a 23.73a 43.22a 3.46a 1.87ab 14.06b 12.06a 8.94ab 17.31ab
Y2 40.49ab 83.39b 24.10a 43.16a 3.55a 1.83ab 13.35b 11.61a 8.84ab 17.82ab
Y3 41.87a 84.92ab 23.08a 43.64a 3.54a 1.87ab 13.20b 11.05a 9.13a 18.57a
Y4 37.75b 84.47ab 23.48a 42.85a 3.55a 1.89a 18.43a 12.16a 8.57b 16.67b
CK 38.56b 81.87b 24.74a 41.94a 3.54a 1.80b 15.75ab 11.06a 9.24a 16.94b

Table 4

"

处理
Treatment
成本Cost 产值
Output
value
净利润
Net profit
有机肥
Organic fertilizer
化肥氮
Fertilizer nitrogen
无机磷钾肥
Inorganic phosphate potassium fertilizer
其他成本
Other costs
合计
Total
Y1 960.00 704.36 1008.00 5000.00 7672.36 24 694.73b 17 022.37b
Y2 1440.00 616.28 1008.00 5000.00 8064.28 27 217.30a 19 153.02a
Y3 1920.00 528.19 1008.00 5000.00 8456.19 23 070.03cd 14 613.84c
Y4 2400.00 440.10 1008.00 5000.00 8848.10 22 158.68d 13 310.58d
CK 0.00 1200.00 11 008.00 5000.00 7208.00 23 281.50c 16 073.50b
[1] 殷艳, 尹亮, 张学昆, 等. 我国油菜产业高质量发展现状和对策. 中国农业科技导报, 2021, 23(8):1-7.
[2] 刘成, 冯中朝, 肖唐华, 等. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41(4):485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001
[3] 张智, 丛日环, 鲁剑巍. 中国冬油菜产业氮肥减施增效潜力分析. 植物营养与肥料学报, 2017, 23(6):1494-1504.
[4] 侯萌瑶, 张丽, 王知文, 等. 中国主要农作物化肥用量估算. 农业资源与环境学报, 2017, 34(4):360-367.
[5] Sun B, Zhang L X, Yang L Z, et al. Agricultural non-point source pollution in China: causes and mitigation measures. Ambio, 2012, 41(4):370-379.
doi: 10.1007/s13280-012-0249-6 pmid: 22311715
[6] 黄国勤, 王兴祥, 钱海燕, 等. 施用化肥对农业生态环境的负面影响及对策. 生态环境, 2004, 13(4):656-660.
[7] Chen X J, Zeng D, Xu Y, et al. Perceptions, risk attitude and organic fertilizer investment: evidence from rice and banana farmers in Guangxi, China. Sustainability, 2018, 10(10):3715.
[8] 张智, 乔艳, 刘东海, 等. 氮肥减施对油菜产量、氮素吸收与利用的影响. 中国土壤与肥料, 2020(2):140-145,183.
[9] Li X P, Liu C L, Zhao H, et al. Consistent improvements in soil biochemical properties and crop yields by organic fertilization for above-ground (rapeseed) and below-ground (sweet potato) crops. The Journal of Agricultural Science, 2018, 156(10):1186-1195.
[10] 王激清, 刘全清, 马文奇, 等. 中国养分资源利用状况及调控途径. 资源科学, 2005, 27(3):47-53.
[11] Yang Y D, Wang P X, Zeng Z H. Dynamics of bacterial communities in a 30-year fertilized paddy field under different organic-inorganic fertilization strategies. Agronomy, 2019, 9 (1):14.
[12] 蒋倩红, 陆志峰, 赵海燕, 等. 长江中下游冬油菜产区有机无机肥配施下减氮增效潜力分析. 中国农业科学, 2020, 53(14):2907-2918.
doi: 10.3864/j.issn.0578-1752.2020.14.014
[13] 田昌, 彭建伟, 宋海星, 等. 不同有机无机肥配比对‘湘杂油763’产量、叶绿素和碳氮代谢产物的影响研究. 中国农学通报, 2011, 27(5):134-138.
[14] 宋以玲, 于建, 陈士更, 等. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响. 水土保持学报, 2018, 32(1):352-360.
[15] 邬梦成, 李鹏, 张欣, 等. 不同有机物施用对油菜―红薯轮作模式下养分吸收利用的影响. 水土保持学报, 2018, 32(1):320-326.
[16] 徐绮雯, 马淑敏, 朱波, 等. 生物炭与化肥配施对紫色土肥力与微生物特征及油菜产量品质的影响. 草业学报, 2020, 29(5):121-131.
doi: 10.11686/cyxb2019338
[17] Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.):a review. Agriculture Ecosystems and Environment, 2006, 117(2):80-108.
[18] 高建芹, 浦惠明, 龙卫华, 等. 甘蓝型油菜籽粒产量和品质性状对氮肥用量的响应. 江苏农业学报, 2019, 35(3):602-611.
[19] 熊廷浩, 资涛, 张嫒, 等. 化肥减量条件下不同有机肥用量对油菜养分利用和产量的影响. 作物杂志, 2021(3):133-139.
[20] 杨锐, 熊廷浩, 资涛, 等. 配施有机肥条件下油菜化肥氮减施潜力研究. 中国土壤与肥料, 2022(9):39-44.
[21] 付小猛, 毛加梅, 沈正松, 等. 中国生物有机肥的发展现状与趋势. 湖北农业科学, 2017, 56(3):401-404.
[22] Zapletalová A, Ducsay L, Varga L, et al. Influence of nitrogen nutrition on fatty acids in oilseed rape (Brassica napus L.). Plants, 2021, 11(1):44.
[23] 邓力超, 薛灿辉, 范连益. 氮磷钾化肥与有机肥不同配比对油菜生长及产量、品质的影响. 中国土壤与肥料, 2012(5):31-34.
[24] 田昌, 彭建伟, 宋海星, 等. 有机肥化肥配施对冬油菜养分吸收、籽粒产量和品质的影响. 中国土壤与肥料, 2012(4):70-74.
[25] 刘永忠, 雷发林, 刘永春, 等. 有机肥和化肥配施对春油菜产量养分吸收量及品质的影响. 青海农林科技, 2017(4):9-12,77.
[1] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[2] Liu Yue, Jia Yonghong, Yu Yuehua, Zhang Jinshan, Wang Runqi, Li Dandan, Shi Shubing. Effects of Nitrogen Fertilizer Management on Growth and Development, Yield and Quality of Peanut in Northern Xinjiang [J]. Crops, 2024, 40(3): 119-126.
[3] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[4] Xia Yulan, Wang Dexun, Zhao Yuanyuan, Fan Zhiyong, Li Juan, Wang Ge, Zhao Zhihao, Shi Hongzhi. Effects of Potassium Fertilizer Dosage and Topdressing Period on Chemical Composition, Yield and Quality of Leaves ofBlack Shank-Resistant Tobacco Honghuadajinyuan [J]. Crops, 2024, 40(3): 133-140.
[5] Chen Biwei, Ju Xikai, Sun Yiming, Li Qinghua, Liu Qing, Zeng Lusheng. Effects of Drought in Different Periods on Yield Formation and Starch Gelatinization Characteristics of Starchy Sweet Potato [J]. Crops, 2024, 40(3): 141-147.
[6] Liu Yajun, Lu Yun, Wang Wenjing, Hu Qiguo, Chu Fengli, Li Zhijie. Effects of Organic Fertilizer and Soil Conditioner on the Growth and Development of Continuous Cropping Sweet Potato and Soil Fertility [J]. Crops, 2024, 40(3): 168-174.
[7] Zhang Lin, Wu Wenming, Zhou Dengfeng, Peng Chen, Wang Shiji. Responses of Growth and Yield of Fresh-Eating Maize “Caitiannuo 100” to Autumn Sowing Date under Facility Cultivation [J]. Crops, 2024, 40(3): 175-179.
[8] Li Zhi, Guo Xiaoxia, Huang Chunyan, Jian Caiyuan, Tian Lu, Han Kang, Ren Xiaoyun, Ren Huimin, Zhang Peng, Liu Jia, Kong Dejuan, Wang Zhenzhen, Su Wenbin. Effects of Nitrogen Base Fertilizer and Topdressing Ratio on the Growth, Yield and Sugar Content of Sugar Beet under Shallow Buried Drip Irrigation [J]. Crops, 2024, 40(3): 186-191.
[9] Ou Kunpeng, Wang Xueli, Wang Yan, He Minghui, Huang Liankang, Zheng Debo, Lin Qian. Effects of Different Proportions of Nitrogen, Phosphorus and Potassium on Photosynthetic Characteristics, Yield and Quality of Pueraria lobata var. thomsonii [J]. Crops, 2024, 40(3): 216-222.
[10] Xu Rongqiong, Zhang Yifei, Du Jiarui, Yin Xuewei, Yang Kejun, Sun Yishan, Li Zesong, Li Guibin, Lu Yuxin, Liu Haichen, Li Weiqing, Li Jiayu. Effects of Foliar Spraying Calcium Fertilizer on Lodging Resistance and Yield Formation of Spring Maize [J]. Crops, 2024, 40(3): 223-230.
[11] Luo Yuankai, Li Ranqiu, Li Yimeng, Tang Wei, Liu Yaju. Effects of Planting Density and EBR Concentration on the Yield and Quality of Sweet Potato [J]. Crops, 2024, 40(3): 231-237.
[12] Xie Zhangshu, Xie Xuefang, Zhou Chengxuan, Xu Doudou, Li Jiarui, Tu Xiaoju, Liu Aiyu, Li Fei, Gong Yangcang, He Yunxin, Wei Shangzhi, Wu Bibo, Zhou Zhonghua. A New Cotton Seed Balling Technology and Its Influence on Cotton Seedling Emergence, Yield and Quality [J]. Crops, 2024, 40(3): 257-264.
[13] Hu Qingyuan, Gong Dan, Pan Xiaowei, Wang Suhua, Wang Lixia. Joint Identification of New Varieties (Lines) of Cowpea during 2019-2021 Organized by China Agricultural Research System of Food Legume [J]. Crops, 2024, 40(3): 76-81.
[14] Wang Shen, Fan Baojie, Liu Changyou, Wang Yan, Zhang Zhixiao, Su Qiuzhu, Shi Huiying, Shen Yingchao, Wang Xueqing, Tian Jing. Identification and Evaluation of Yield and Main Agronomic Characteristics of New Mung Bean Varieties [J]. Crops, 2024, 40(3): 90-99.
[15] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!