Crops ›› 2024, Vol. 40 ›› Issue (3): 257-264.doi: 10.16035/j.issn.1001-7283.2024.03.035

Previous Articles     Next Articles

A New Cotton Seed Balling Technology and Its Influence on Cotton Seedling Emergence, Yield and Quality

Xie Zhangshu1(), Xie Xuefang2(), Zhou Chengxuan1, Xu Doudou1, Li Jiarui1, Tu Xiaoju1, Liu Aiyu1, Li Fei3, Gong Yangcang3, He Yunxin3, Wei Shangzhi4, Wu Bibo5, Zhou Zhonghua1()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
    3Hunan Institute of Cotton Science, Changde 415101, Hunan, China
    4Huanggai Agricultural Comprehensive Service Centre, Linxiang, Yueyang 414303, Hunan, China
    5Hunan Bio-Mechanical and Electrical Vocational and Technical College, Changsha 410127, Hunan, China
  • Received:2024-03-01 Revised:2024-04-01 Online:2024-06-15 Published:2024-06-18

Abstract:

JX0010, an early maturing cotton variety bred by the Cotton Research Institute of Hunan Agricultural University, were used as the test material, and the cotton seeds were balled with cassava modified benign starch, bentonite, diatomite, attapulgite and seedling substrate, and a re-split experiment of three factors including seed treatment, sowing date and sowing density were carried out in the experiment base of Hunan Agricultural University to explore the effects of seed balling on cotton emergence rate, growth period, fiber quality and yield. The results showed that the growth period of cotton after seed balling was 101-108 d, which was significantly shortened by 15-18 d compared with 116-126 d of direct seeding. The emergence rate and emergence hole rate of cotton seeds after balling treatment were 19.63%-25.00% and 14.82%-20.74%, and higher than those of direct seeding, respectively. Compared with seed direct seeding, the number of bolls per plant, single boll weight, seed cotton yield and lint yield of cotton after balling treatment were significantly increased. Seed treatment had no significant effect on fiber quality, but it changed to a certain extent under the interaction of various factors. Comprehensive analysis showed that the treatment of seed balling could improve the emergence rate of cotton seeds, shorten the growth period and achieve higher yield.

Key words: Cotton, Sowing density, Sowing date, Seed balling, Emergence rate, Yield, Quality

Fig.1

Germination test of balled cotton seed and control (a) Unballed cotton seed (left) and Balled seed (right), (b) 0 days after planting, balled cotton seed (left) and unballed cotton seed (right), (c) Three days after planting, balled cotton seed (left) and unballed cotton seed (right), (d) Six days after planting, balled cotton seed (left) and unballed cotton seed (right)."

Table 1

Effects of different treatments on cotton growth process and growth period"

处理
Treatment
生育进程(月-日)Reproductive process (month-day) 生育时期Reproductive period (d) 生育期
Growth
period (d)
出苗
Emergence
现蕾
Squaring
开花
Blooming
吐絮
Boll opening
苗期
Seedling stage
蕾期
Bud stage
花铃期
Flower and boll stage
A1 B1 C1 05-31 07-05 07-25 09-16 35Bc 20Cc 53BCDcd 108De
C2 06-10 07-13 07-31 09-20 33Bc 18CDd 51CDde 102Efg
B2 C1 05-31 07-05 07-23 09-12 35Bc 18CDd 51CDde 104Ef
C2 06-10 07-14 07-31 09-19 34Bc 17Dd 50De 101Eg
A2 B1 C1 06-04 07-15 08-10 10-07 42Aa 26Aa 58Aa 126Aa
C2 06-14 07-24 08-17 10-11 40Aab 24ABb 55ABbc 119BCc
B2 C1 06-04 07-16 08-09 10-04 42Aa 24ABb 56ABab 122Bb
C2 06-14 07-23 08-15 10-08 39Ab 23Bb 54BCbc 116Cd

Table 2

Emergence rate and emergence hole rate of cotton under different treatments %"

处理
Treatment
出苗率
Emergence rate
出苗穴率
Emergence hole rate
A1 B1 C1 89.44a 97.78a
C2 95.56a 100.00a
B2 C1 92.22a 98.52a
C2 91.11a 99.26a
A2 B1 C1 64.44c 82.22bc
C2 71.67bc 78.89c
B2 C1 67.78c 77.04c
C2 75.93b 85.18b

Table 3

Variance analysis results of emergence rate and emergence hole rate of cotton under different treatments"

变异来源
Source of variation
PP-value
出苗率
Emergence rate
出苗穴率
Emergence hole rate
种子处理Seed treatment 0.000** 0.000**
播种密度Seeding density 0.301 0.823
播期Sowing date 0.002** 0.129
种子处理×播种密度
Seed treatment×seeding density
0.037*
0.823
种子处理×播期
Seed treatment×sowing date
0.025*
0.708
播种密度×播期
Seeding density×sowing date
0.273
0.056
种子处理×播种密度×播期
Seed treatment×seeding
density×sowing date
0.399

0.017*

Table 4

Effects of different treatments on cotton yield characteristics"

处理
Treatment
单株铃数
Bolls per plant
单铃质量
Single boll weight (g)
衣分
Lint percentage (%)
籽指
Seed index (g)
籽棉产量
Seed cotton yield (kg/hm2)
皮棉产量
Lint yield (kg/hm2)
A1 B1 C1 33.4±0.40a 4.4±0.13a 40.7±0.14a 10.7±0.72a 3724.80±8.89b 1516.35±3.80b
C2 33.8±0.87a 4.3±0.21a 40.7±0.15a 10.6±0.69a 3672.15±5.70b 1495.80±2.46bc
B2 C1 32.7±1.16a 3.9±0.02bc 40.5±0.17a 10.9±0.62a 4882.20±12.65a 1979.10±4.89a
C2 32.9±0.75a 4.1±0.04ab 40.7±0.39a 10.6±0.44a 5197.35±5.89a 2113.20±2.71a
A2 B1 C1 23.0±0.80b 3.8±0.33bc 40.9±0.52a 10.8±0.35a 2213.10±13.31d 904.35±4.89d
C2 22.8±3.70b 3.8±0.25c 40.7±0.17a 11.0±0.99a 2161.80±14.05d 880.20±5.75d
B2 C1 22.8±1.56b 3.8±0.21bc 40.7±0.24a 10.5±0.32a 3303.00±24.34c 1345.95±9.94c
C2 25.5±1.40b 3.8±0.12c 40.6±0.17a 10.5±0.51a 3648.30±14.12bc 1482.15±6.13bc

Table 5

Variance analysis results of yield characteristics of cotton under different treatments"

变异来源
Source of variation
PP-value
单株铃数
Bolls per plant
单铃质量
Single boll weight
衣分
Lint percentage
籽指
Seed index
籽棉产量
Seed cotton yield
皮棉产量
Lint yield
种子处理Seed treatment 0.000** 0.000** 0.469 1.000 0.000** 0.000**
播种密度Seeding density 0.742 0.070 0.295 0.560 0.000** 0.000**
播期Sowing date 0.275 0.854 0.715 0.845 0.113 0.116
种子处理×播种密度Seed treatment×sowing date 0.152 0.064 1.000 0.336 0.753 0.789
种子处理×播期Seed treatment×sowing date 0.489 0.555 0.342 0.560 0.926 0.992
播种密度×播期Seeding density×sowing date 0.353 0.284 0.759 0.795 0.035* 0.034*
种子处理×播种密度×播期
Seed treatment×seeding density×sowing date
0.255
0.267
0.907
0.896
0.932
0.967

Table 6

Effects of different treatments on cotton fiber quality"

处理
Treatment
上半部平均长度
Average length of upper half (mm)
整齐度指数
Uniformity index (%)
断裂比强度
Fiber strength (cN/tex)
马克隆值
Micronaire value
伸长率
Elongation rate (%)
A1 B1 C1 30.13±0.40b 86.80±0.17a 32.00±0.36a 5.30±0.10ab 6.73±0.06a
C2 30.77±0.32ab 86.67±0.81a 33.00±1.10a 5.37±0.06a 6.83±0.06a
B2 C1 30.40±0.30b 86.90±0.40a 31.83±0.21a 5.37±0.06a 6.73±0.06a
C2 30.67±0.23ab 86.97±0.06a 32.97±0.67a 5.17±0.06b 6.76±0.06a
A2 B1 C1 30.70±0.46ab 85.67±1.46a 32.77±0.64a 5.20±0.10b 6.73±0.06a
C2 30.70±0.10ab 86.90±0.85a 32.43±0.25a 5.37±0.06a 6.77±0.06a
B2 C1 30.07±0.49b 87.07±0.72a 31.83±0.74a 5.23±0.06ab 6.73±0.06a
C2 31.20±0.78a 86.80±0.46a 31.93±0.50a 5.17±0.12b 6.77±0.06a

Table 7

Variance analysis results of cotton fiber quality in different treatments"

变异来源
Source of variation
PP-value
上半部平均长度
Average length of the upper half
整齐度指数
Uniformity index
断裂比强度
Fiber strength
马克隆值
Micronaire value
伸长率
Elongation rate
种子处理Seed treatment 0.334 0.47 0.424 0.090 0.49
播种密度Seeding density 0.963 0.18 0.128 0.034* 0.49
播期Sowing date 0.011* 0.47 0.080 0.800 0.05
种子处理×播种密度
Seed treatment×seeding density
0.675
0.47
0.243
0.800
0.49
种子处理×播期Seed treatment×sowing date 0.744 0.41 0.033* 0.090 0.49
播种密度×播期Seeding density×sowing date 0.292 0.30 0.585 0.001** 0.49
种子处理×播种密度×播期
Seed treatment×seeding density×sowing date
0.049*
0.18
0.772
0.800
0.49

Fig.2

Schematic diagram of untreated and balled seeds (a) Untreated cotton seeds, (b) Balled cotton seeds."

[1] 刘瑞显, 周治国, 陈德华, 等. 长江流域棉区棉花“三集中”的轻简高效理论与栽培途径. 中国棉花, 2018, 45(9):11-12,17.
doi: 10.11963/1000-632X.lrxzzg.20180920
[2] 高伟, 张西岭. 长江流域棉花生产现状及“十三五”发展建议. 中国棉花, 2016, 43(1):3-7.
[3] 李育强, 刘爱玉, 李毅, 等. 湖南棉花生产现状及全程机械化发展思路. 湖南农业科学, 2013(21):94-97.
[4] 董合忠. 棉花种子学. 北京: 科学出版社, 2004.
[5] 王昱翔. 直播棉用种子处理悬浮剂及丸粒化技术研究. 长沙: 湖南农业大学, 2019.
[6] 谢章书, 李侃, 杨丹, 等. 棉花种子球化处理对幼苗生长发育的影响. 湖南农业大学学报(自然科学版), 2022, 48(3):265- 269.
[7] 湖南省技术质量监督局. 棉花栽培技术规范:DB43/T 286-2006. 北京: 中国标准出版社,2006.
[8] 中华人民共和国国家质量监督检验检疫总局. HVI棉纤维物理性能试验方法:GB/T 20392-2006. 北京: 中国标准出版社,2006.
[9] Jørgensen M S, Labouriau R, Olesen B. Seed size and burial depth influence Zostera marina L (eelgrass) seed survival, seedling emergence and initial seedling biomass development. PLoS ONE, 2019, 14(4):e0215157
[10] Maeda A B, Wells L W, Sheehan M A, et al. Stories from the greenhouse—a brief on cotton seed germination. Plants, 2021, 10 (12):2807.
[11] Maswada H F, Sunoj V S, Prasad P V. A comparative study on the effect of seed pre-sowing treatments with microwave radiation and salicylic acid in alleviating the drought-induced damage in wheat. Journal of Plant Growth Regulation, 2021, 40(1):48-66.
[12] Srimathi P, Mariappan N, Sundaramoorthy L, et al. Effect of organic seed pelleting on seed storability and quality seedling production in biofuel tree species. Journal of Horticulture and Forestry, 2013, 5(5):68-73.
[13] 张彦才, 李巧云, 刘全清, 等. 种子丸粒化对棉花生长发育的影响. 河北农业科学, 2003,7(增):19-22.
[14] Rao P J M, Gopinath M. Variability and association studies for yield and yield components in upland cotton (Gossypium hirsutum L.) under red chalka soils. Electronic Journal of Plant Breeding, 2013, 4(1):1093-1096.
[15] 刘明分. 棉花种子丸粒化生物学效应的研究. 石家庄:河北师范大学, 2007.
[16] 毛允峰, 王勇, 张金帮. 棉花衣分变化的条件分析. 江西棉花, 2006(5):15-16.
[17] 刘国栋, 张桂芝, 王爱玉, 等. 品种和整枝方式对棉花产量及品质构成因素的影响. 中国农学通报, 2020, 36(33):45-49.
doi: 10.11924/j.issn.1000-6850.casb20191200927
[18] 夏绍南, 余炼中, 张丽娟, 等. 江西丘陵无灌溉地棉花种植方式与密度研究. 棉花科学, 2013, 35(4):22-26.
[19] 朱家辉. 棉花新品种新陆中76号配套栽培技术研究. 石河子: 石河子大学, 2016.
[20] 王欣悦, 刘爱玉, 邹茜, 等. 密度与播种期对直播棉生长发育和产量品质的影响. 作物研究, 2014, 28(6):597-601.
[21] 周喻彻. 种子包衣剂的研究及应用现状综述. 吉林农业科学, 1993(4):88-90.
[22] 郝兴华. 千年桐种子包衣技术及环境适应性研究. 福州: 福建农林大学, 2012.
[23] Piengtawan T, Duncan R. S, Kanokporn T, et al. Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends in Food Science & Technology, 2018, 83:167-180.
[24] Huang C, Zhang H, Zhao Y, et al. Diatomite-supported Pd-M (M= Cu, Co, Ni) bimetal nanocatalysts for selective hydrogenation of long-chain aliphatic esters. Journal of Colloid and Interface Science, 2012, 386(1):60-65.
[25] Chekaev N P, Ryabov A E, Vlasova T A, et al. Change in the agrophysical properties of leached chernozem depending on the applicion of local siliceous rocks and fertilizers. Volga Region Farmland, 2019, 4:63-69.
[26] Alsar Z, Duskinova B, Insepov Z. New sorption properties of diatomaceous earth for water desalination and reducing salt stress of plants. Eurasian Chemico-Technological Journal, 2020, 22(2):89-97.
[27] 龚光禄, 杨通静, 陈娅娅, 等. 凹凸棒土对姬松茸生长发育及出菇的影响. 中国食用菌, 2021, 40(4):32-37,46.
[28] Guan Y, Song C, Gan Y, et al. Increased maize yield using slow- release attapulgite-coated fertilizers. Agronomy for Sustainable Development, 2014, 34(3):657-665.
[29] Davies J E D, Jabeen N. The adsorption of herbicides and pesticides on clay minerals and soils. Part 1. Isoproturon. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 43 (3):329-336.
[30] Bouabid R, Badraoui M, Bloom P R. Potassium fixation and charge characteristics of soil clays. Soil Science Society of America Journal, 1991, 55(5):1493-1498.
[31] 胡丽华. 棉花施用膨润土的效应与技术. 江西棉花, 1995(3):10-12.
[1] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[2] Liu Yue, Jia Yonghong, Yu Yuehua, Zhang Jinshan, Wang Runqi, Li Dandan, Shi Shubing. Effects of Nitrogen Fertilizer Management on Growth and Development, Yield and Quality of Peanut in Northern Xinjiang [J]. Crops, 2024, 40(3): 119-126.
[3] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[4] Xia Yulan, Wang Dexun, Zhao Yuanyuan, Fan Zhiyong, Li Juan, Wang Ge, Zhao Zhihao, Shi Hongzhi. Effects of Potassium Fertilizer Dosage and Topdressing Period on Chemical Composition, Yield and Quality of Leaves ofBlack Shank-Resistant Tobacco Honghuadajinyuan [J]. Crops, 2024, 40(3): 133-140.
[5] Chen Biwei, Ju Xikai, Sun Yiming, Li Qinghua, Liu Qing, Zeng Lusheng. Effects of Drought in Different Periods on Yield Formation and Starch Gelatinization Characteristics of Starchy Sweet Potato [J]. Crops, 2024, 40(3): 141-147.
[6] Yi Qin, Huang Miao, Yang Guotao, Hu Yungao, Chen Hong, Wang Xuechun. Effects of Combined Application of Organic and Inorganic Fertilizers on Yield and Quality of Rapeseed in Sichuan [J]. Crops, 2024, 40(3): 163-167.
[7] Zhang Lin, Wu Wenming, Zhou Dengfeng, Peng Chen, Wang Shiji. Responses of Growth and Yield of Fresh-Eating Maize “Caitiannuo 100” to Autumn Sowing Date under Facility Cultivation [J]. Crops, 2024, 40(3): 175-179.
[8] Li Zhi, Guo Xiaoxia, Huang Chunyan, Jian Caiyuan, Tian Lu, Han Kang, Ren Xiaoyun, Ren Huimin, Zhang Peng, Liu Jia, Kong Dejuan, Wang Zhenzhen, Su Wenbin. Effects of Nitrogen Base Fertilizer and Topdressing Ratio on the Growth, Yield and Sugar Content of Sugar Beet under Shallow Buried Drip Irrigation [J]. Crops, 2024, 40(3): 186-191.
[9] Ou Kunpeng, Wang Xueli, Wang Yan, He Minghui, Huang Liankang, Zheng Debo, Lin Qian. Effects of Different Proportions of Nitrogen, Phosphorus and Potassium on Photosynthetic Characteristics, Yield and Quality of Pueraria lobata var. thomsonii [J]. Crops, 2024, 40(3): 216-222.
[10] Xu Rongqiong, Zhang Yifei, Du Jiarui, Yin Xuewei, Yang Kejun, Sun Yishan, Li Zesong, Li Guibin, Lu Yuxin, Liu Haichen, Li Weiqing, Li Jiayu. Effects of Foliar Spraying Calcium Fertilizer on Lodging Resistance and Yield Formation of Spring Maize [J]. Crops, 2024, 40(3): 223-230.
[11] Luo Yuankai, Li Ranqiu, Li Yimeng, Tang Wei, Liu Yaju. Effects of Planting Density and EBR Concentration on the Yield and Quality of Sweet Potato [J]. Crops, 2024, 40(3): 231-237.
[12] Hu Qingyuan, Gong Dan, Pan Xiaowei, Wang Suhua, Wang Lixia. Joint Identification of New Varieties (Lines) of Cowpea during 2019-2021 Organized by China Agricultural Research System of Food Legume [J]. Crops, 2024, 40(3): 76-81.
[13] Wang Shen, Fan Baojie, Liu Changyou, Wang Yan, Zhang Zhixiao, Su Qiuzhu, Shi Huiying, Shen Yingchao, Wang Xueqing, Tian Jing. Identification and Evaluation of Yield and Main Agronomic Characteristics of New Mung Bean Varieties [J]. Crops, 2024, 40(3): 90-99.
[14] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[15] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!