Crops ›› 2024, Vol. 40 ›› Issue (4): 24-32.doi: 10.16035/j.issn.1001-7283.2024.04.004

;

Previous Articles     Next Articles

Genetic Diversity Analysis and Comprehensive Evaluation of Maize Landraces in Southwest China

Li Qingchao1(), Zhang Dengfeng2, Li Chunhui2, Yang Shan1, Liu Jianxin1, Wu Xun3()   

  1. 1Bijie Institute of Agricultural Sciences, Bijie 551700, Guizhou, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Institute of Drought Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550000, Guizhou, China
  • Received:2024-01-26 Revised:2024-03-19 Online:2024-08-15 Published:2024-08-14

Abstract:

Totall 785 maize landraces from Southwest China were used to investigate the relationships between phenotypic traits of maize germplasm resources in Southwest China and to identify and screen elite germplasm resources. The 13 phenotypic traits were comprehensively evaluated by means of membership function, Shannon-Wiener’s diversity index, grey correlation analysis, principal component analysis and cluster analysis. The results showed that the coefficients of variation of the 13 phenotypic traits ranged from 10.5% to 84.0%, and the genetic diversity index ranged from 1.597 to 1.999. The grey correlation analysis revealed the relationships between the traits and yield, extensive correlations among the traits, and the abundant genetic variation in the landraces were evaluated. The 785 landraces were divided into three groups according to the method of K-means systematic clustering, including 168, 405 and 212 landraces, respectively. Finally, 15 landraces with the best performance were screened out.

Key words: Maize, Landrace, Phenotypic traits, Genetic diversity, Comprehensive evaluation

Table 1

Coefficient of variation analysis for 13 phenotypic traits of maize landraces from different provinces (cities) of Southwest China"

性状
Trait
平均值
Mean
标准差
Standard deviation
变异系数
CV (%)
变异系数CV (%)
贵州GZ 四川SC 云南YN 陕西SX 重庆CQ
X1 (cm) 292.247 49.884 17.1 16.0 14.4 15.5 12.4 14.9
X2 (cm) 135.076 36.970 27.4 22.9 24.9 24.2 19.4 21.9
X3 (cm) 49.030 5.126 10.5 11.9 9.5 7.8 7.2 9.0
X4 17.511 4.134 23.6 21.5 21.2 22.9 16.8 23.3
X5 (cm) 18.032 2.586 14.3 14.9 12.3 13.8 11.8 18.2
X6 (cm) 4.965 0.541 10.9 11.1 10.1 11.4 9.3 11.3
X7 (cm) 0.957 0.804 84.0 87.3 85.0 70.5 84.8 84.1
X8 13.065 1.906 14.6 16.1 12.7 14.5 14.0 13.6
X9 35.463 5.158 14.5 14.6 12.4 15.7 12.2 17.7
X10 (g) 0.832 0.327 39.3 38.6 34.6 43.8 30.4 44.9
X11 (%) 16.070 2.441 15.2 14.8 11.1 16.2 12.9 16.7
X12 (g) 37.382 7.428 19.9 20.2 18.0 17.7 15.5 19.7
X13 (kg) 3.358 1.379 41.1 40.5 36.7 47.8 31.5 48.5

Table 2

The genetic diversity indexes of phenotypic traits"

省(市)
Province (city)
性状Trait
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
贵州GZ 2.098 2.066 1.761 1.931 1.825 1.738 1.675 1.933 2.022 2.015 1.783 1.964 2.115
四川SC 1.964 2.051 1.933 1.866 1.927 1.974 1.930 1.808 2.024 1.923 1.703 1.919 2.106
云南YN 1.959 1.965 1.772 1.822 2.032 1.953 1.882 1.962 1.915 2.039 1.756 2.019 2.034
陕西SX 1.987 1.954 2.078 2.115 2.072 1.998 1.935 2.144 1.927 2.117 1.923 2.026 2.190
重庆CQ 2.036 2.086 1.993 2.078 1.942 2.051 1.958 1.998 2.009 1.918 1.734 2.184 2.172
综合Total 1.999 1.964 1.628 1.784 1.768 1.710 1.597 1.869 1.759 1.952 1.610 1.936 1.971

Fig.1

Number distributions of membership values of 13 phenotypic traits"

Table 3

Correlation analysis of 13 phenotypic traits in 785 maize germplasm resources"

性状Trait X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
X1 1.000 0.926** 0.458** 0.530** 0.476** 0.360** 0.155** -0.142** 0.290** 0.463** 0.321** 0.600** 0.303**
X2 0.926** 1.000 0.359** 0.538** 0.422** 0.309** 0.167** -0.126** 0.253** 0.392** 0.355** 0.513** 0.217**
X3 0.458** 0.359** 1.000 0.551** 0.373** 0.220** -0.035 -0.078* 0.330** 0.362** -0.015 0.355** 0.299**
X4 0.530** 0.538** 0.551** 1.000 0.341** 0.248** 0.018 -0.018 0.314** 0.325** 0.117** 0.304** 0.244**
X5 0.476** 0.422** 0.373** 0.341** 1.000 0.474** 0.126** -0.032 0.743** 0.561** 0.163** 0.537** 0.484**
X6 0.360** 0.309** 0.220** 0.248** 0.474** 1.000 0.078* 0.325** 0.449** 0.538** 0.152** 0.481** 0.497**
X7 0.155** 0.167** -0.035 0.018 0.126** 0.078* 1.000 0.028 -0.115** 0.046 0.158** 0.093** -0.006
X8 -0.142** -0.126** -0.078* -0.018 -0.032 0.325** 0.028 1.000 0.120** 0.063 0.049 -0.352** 0.153**
X9 0.290** 0.253** 0.330** 0.314** 0.743** 0.449** -0.115** 0.120** 1.000 0.484** 0.044 0.278** 0.520**
X10 0.463** 0.392** 0.362** 0.325** 0.561** 0.538** 0.046 0.063 0.484** 1.000 0.235** 0.596** 0.783**
X11 0.321** 0.355** -0.015 0.117** 0.163** 0.152** 0.158** 0.049 0.044 0.235** 1.000 0.254** 0.110**
X12 0.600** 0.513** 0.355** 0.304** 0.537** 0.481** 0.093** -0.352** 0.278** 0.596** 0.254** 1.000 0.502**
X13 0.303** 0.217** 0.299** 0.244** 0.484** 0.497** -0.006 0.153** 0.520** 0.783** 0.110** 0.502** 1.000

Fig.2

K-means cluster analysis of 13 phenotypic traits of 785 maize germplasm resources"

Table 4

Comparison of the phenotypic differences of three cluster groups of maize landraces"

性状Trait 类群I Group I (n=168) 类群Ⅱ Group Ⅱ (n=405) 类群Ⅲ Group Ⅲ (n=212) F P
X1 226.081±24.815 287.098±18.404 354.515±26.032 1602.350 0.000***
X2 89.179±18.815 129.728±15.303 181.662±20.911 1312.210 0.000***
X3 45.186±4.984 49.280±4.431 51.598±4.674 91.513 0.000***
X4 14.293±3.575 17.396±3.498 20.282±3.739 131.557 0.000***
X5 16.194±2.531 18.110±2.273 19.340±2.335 84.634 0.000***
X6 4.698±0.595 4.973±0.496 5.161±0.492 37.601 0.000***
X7 0.817±0.683 0.915±0.793 1.148±0.878 9.267 0.000***
X8 13.524±1.904 13.055±1.817 12.719±2.003 8.543 0.000***
X9 32.879±5.228 35.791±4.632 36.883±5.347 32.330 0.000***
X10 0.580±0.284 0.853±0.274 0.991±0.337 93.422 0.000***
X11 15.317±1.825 15.706±2.226 17.360±2.765 47.048 0.000***
X12 30.608±6.684 37.616±5.836 42.304±6.592 165.555 0.000***
X13 2.451±1.300 3.620±1.252 3.578±1.376 52.410 0.000***

Fig.3

UMAP cluster map of phenotypic traits of 785 maize germplasm resources"

Table 5

Principal component analysis of 13 phenotypic traits in 785 maize germplasm resources"

性状
Trait
主成分1
Principal component 1
主成分2
Principal component 2
主成分3
Principal component 3
主成分4
Principal component 4
X1 0.788 -0.464 0.065 0.141
X2 0.723 -0.512 0.122 0.199
X3 0.579 -0.123 -0.463 0.298
X4 0.603 -0.247 -0.265 0.493
X5 0.773 0.183 -0.061 -0.123
X6 0.646 0.395 0.255 0.061
X7 0.113 -0.244 0.598 -0.004
X8 -0.022 0.602 0.413 0.618
X9 0.643 0.450 -0.220 0.041
X10 0.792 0.275 0.072 -0.217
X11 0.320 -0.251 0.602 -0.027
X12 0.754 -0.193 -0.007 -0.463
X13 0.685 0.466 0.014 -0.223
特征值Eigenvalue 5.052 1.761 1.316 1.106
贡献率Contribution rate (%) 38.862 13.545 10.120 8.507
累计贡献率Cumulative contribution rate (%) 38.862 52.407 62.527 71.034

Table 6

Comprehensive evaluation F values and ranking of 15 excellent maize germplasm resources"

编号Number FF value 种质名称Name of landrace 来源省(市)Source province (city) 类群Group 排名Ranking
K848 2.191 铁秆玉米 贵州 1
K612 1.701 新平建兴大白玉米 云南 2
K683 1.627 景星白玉米 云南 3
K128 1.462 包谷 贵州 4
K806 1.442 白苞谷 贵州 5
K218 1.423 黄苞谷 贵州 6
K717 1.383 大红包谷 重庆 7
K224 1.375 本地白苞谷 贵州 8
K653 1.365 本地白包谷 云南 9
K845 1.316 小黄包谷 贵州 10
K152 1.288 齐伯白马牙 贵州 11
K225 1.247 白玉米 贵州 12
K230 1.240 花玉米 贵州 13
K065 1.237 本地白包谷 贵州 14
K926 1.234 老黄包谷 贵州 15

Fig.4

Principal component biplot of phenotypic traits in 785 maize germplasm resources"

Table 7

Grey correlation analysis of 785 maize germplasm resources"

性状Trait 关联度The degree of correlation 排名Ranking
X10 0.926 1
X9 0.896 2
X12 0.896 3
X5 0.894 4
X6 0.892 5
X1 0.888 6
X3 0.887 7
X4 0.885 8
X8 0.882 9
X2 0.880 10
X11 0.878 11
X7 0.780 12
[1] Messmer R, Fracheboud Y, Banziger M, et al. Drought stress and tropical maize: QTL-by-environment inter-actions and stabiliy of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics, 2009, 119(5):913-930.
doi: 10.1007/s00122-009-1099-x pmid: 19597726
[2] Glaszmann J C, Killian B, Upadhyaya H D, et al. Accessing genetic diversity for crop improvement. Current Opinion in Plant Biology, 2010, 13:167-173.
doi: 10.1016/j.pbi.2010.01.004 pmid: 20167531
[3] 谭亮萍, 周火强, 曾化伟, 等. 辣椒种质资源鉴定、评价及利用研究进展. 辣椒杂志, 2008(2):24-28.
[4] 黎裕, 王天宇. 玉米种质创新、进展与展望. 玉米科学, 2017, 25(3):11-18.
[5] 刘志斋, 宋燕春, 石云素. 中国玉米地方品种的种族划分及其特点. 中国农业科学, 2010, 43(5):899-910.
[6] 李春辉, 王天宇, 黎裕. 基于地方品种的种质创新:现状及展望. 植物遗传资源学报, 2019, 20(6):1372-1379.
doi: 10.13430/j.cnki.jpgr.20190516001
[7] 麻一博, 贾晓艳, 刘亚捷, 等. 玉米种质资源苞叶相关性状鉴定及综合评价. 植物遗传资源学报, 2023, 24(6):1568-1579.
[8] 郑晓峰, 黄刚, 李竹莹, 等. 黔东南玉米地方品种农艺性状表现及分类. 种子, 2009, 28(7):76-79.
[9] 姚启伦, 杨克诚, 潘光堂, 等. 云南和贵州玉米地方品种遗传多样性的比较分析. 云南大学学报(自然科学版), 2008, 30(4):408-414.
[10] 姚启伦, 许江, 许冬梅, 等. 四川及重庆玉米地方品种遗传多样性的比较分析. 湖南农业大学学报:自然科学版, 2008, 34(1):6-12.
[11] 伍少云, 孙荣, 奉有壁, 等. 云南省地方玉米种质资源的类型品种及其籽粒颜色多样性分析. 玉米科学, 2004, 12(增):14-16.
[12] 蔡一林, 刘志斋, 王天宇, 等. 国内部分玉米地方品种的品质与农艺性状的表型多样性分析. 植物遗传资源学报, 2011, 12(1):31-36.
doi: 10.13430/j.cnki.jpgr.2011.01.005
[13] 刘志斋, 郭荣华, 石云素, 等. 中国玉米地方品种核心种质花期相关性状的表型多样性研究. 中国农业科学, 2008, 41(6):1591-1602.
[14] Li Y, Shi Y S, Cao Y S, et al. A phenotypic diversity analysis of maize germplasm preserved in China. Maydica, 2002, 47:107-114.
[15] 吴元奇, 郑灵, 荣廷昭. 西南地区白玉米地方种质资源分布及遗传多样性. 草业学报, 2013, 22(4):160-169.
doi: 10.11686/cyxb20130420
[16] 姚坚强, 鲍坚东, 朱金庆, 等. 中国糯玉米wx基因种质资源遗传多样性. 作物学报, 2013, 39(1):43-49.
[17] 姚启伦, 方平, 陈发波. 西南地区玉米地方种质的表型特性分析. 玉米科学, 2013, 21(2):36-41,46.
[18] 石云素, 黎裕, 王天宇, 等. 玉米种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006:14.
[19] Strong W L. Biased richness and evenness relationships within Shannon-Wiener index values. Ecological Indicators, 2016, 67:703-713.
[20] 王自力, 张北举, 李魁印, 等. 高粱种质资源表型性状多样性分析及综合评价. 江苏农业科学, 2022, 50(18):115-121.
[21] Shannon C E. A mathematical theory of communication. Bell Systems Technical Journal, 1948, 27(4):623-656.
[22] 徐泽俊, 齐玉军, 邢兴华, 等. 黄淮海大豆种质农艺与品质性状分析及综合评价. 植物遗传资源学报, 2022, 23(2):468-480.
doi: 10.13430/j.cnki.jpgr.20210915001
[23] 杨露, 高超, 廖德胜, 等. 贵州低热河谷区油茶种质果实性状分析与评价. 植物遗传资源学报, 2022, 23(2):430-441.
[24] Campbell D R. Using phenotypic manipulations to study multivariate selection of floral trait associations. Annals of Botany, 2009, 103(9):1557-1566.
doi: 10.1093/aob/mcp032 pmid: 19218579
[25] Soleri D, Cleveland D A. Farmer selection and conservation of crop varieties. In: Goodman R M ed. Encyclopedia of Plant and Crop Science. Marcel Dekker, New York: Marcel Dekker Incorporated, 2004:433-438.
[26] 李清超, 李永祥, 杨钊钊, 等. 基于多重相关RIL群体的玉米株高和穗位高QTL定位. 作物学报, 2013, 39(9):1521-1529.
[27] Cao Q J, Lu B R, Xia H, et al. Genetic Diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in north-eastern China revealed by simple sequence repeat (SSR) markers. Annals of Botany, 2006, 98(6):1241-1252.
[28] 袁志发, 周静芋. 多元统计分析. 北京: 科学出版社, 2002.
[29] 张群远, 孔繁玲. 作物品种区域试验统计分析模型的比较. 中国农业科学, 2002, 35(4):365-371.
[30] 李清超, 夏玉琼, 杨珊, 等. 玉米品种多环境测试主成分评价模型的构建及应用. 浙江农业学报, 2016, 28(2):181-189.
[31] 陈俊意, 察一林, 王国强, 等. 玉米基因型磷效率的主成分分析. 玉米科学, 2008, 16(1):67-70.
[1] Ma Yanhua, Sun Dequan, Li Suiyan, Lin Hong, Pan Liyan, Li Donglin, Fan Jinsheng, Wu Jianzhong, Yang Guowei. Comprehensive Evaluation of Main Agronomic Traits and Screening of Excellent Germplasms of Maize Landraces in Heilongjiang Province [J]. Crops, 2024, 40(4): 103-112.
[2] Yang Ke, Jiang Chunxia, Zhang Wei, Liu Enke, Zhai Guangqian, Zhang Dongmei. Study on the Effects of Different Treatments on Mechanical Harvest Broken Rate of Maize Grains [J]. Crops, 2024, 40(4): 138-143.
[3] Yuan Di, Zhi Hui, Wang Haigang, Zhang Hui, Yao Qi, Liang Hongkai, Wang Junjie, Chen Ling, Diao Xianmin, Jia Guanqing. Genetic Diversity Analysis and Comprehensive Evaluation of Registered Varieties of Foxtail Millet in China [J]. Crops, 2024, 40(4): 14-23.
[4] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
[5] Li Chunqing, Liu Xiangyu, Yan Peng, Zhou Liuqian, Lu Lin, Dong Zhiqiang, Xu Jiang. Physiological Identification and Comprehensive Evaluation of Drought Resistance of Different Maize Varieties [J]. Crops, 2024, 40(4): 253-262.
[6] Wang Lu, Deng Jie, Zhang Ze, Zhao Mengwei, Che Xinyang, Wang Guangyi, Guo Xu, Zhang Haiyang, He Lin, Weng Jianfeng, Xu Jingyu. Identification and Evaluation of Drought Tolerant Germplasm Resources at Seedling Stage of Maize under PEG Stress [J]. Crops, 2024, 40(4): 43-53.
[7] Liu Qianqian, Li Ran, Zhou Tingfang, Zhang Ze, Shangguan Xiaochuan, Pan Yue, Zhang Degui, Yong Hongjun, Li Mingshun, Han Jienan. Identification of Salt Tolerance of 211 Maize Inbred Lines at Germination Stage [J]. Crops, 2024, 40(4): 62-70.
[8] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[9] Zhang Lin, Wu Wenming, Zhou Dengfeng, Peng Chen, Wang Shiji. Responses of Growth and Yield of Fresh-Eating Maize “Caitiannuo 100” to Autumn Sowing Date under Facility Cultivation [J]. Crops, 2024, 40(3): 175-179.
[10] Xu Rongqiong, Zhang Yifei, Du Jiarui, Yin Xuewei, Yang Kejun, Sun Yishan, Li Zesong, Li Guibin, Lu Yuxin, Liu Haichen, Li Weiqing, Li Jiayu. Effects of Foliar Spraying Calcium Fertilizer on Lodging Resistance and Yield Formation of Spring Maize [J]. Crops, 2024, 40(3): 223-230.
[11] Dai Han, Shen Tie, Shi Taoxiong, Li Ruiyuan. Genomic SSR Loci Mining and Genetic Diversity Analysis of Camellia oleifera Based on Genome Sequences [J]. Crops, 2024, 40(3): 23-31.
[12] Li Jiaqi, Shi Jianguo, Chen Qihang, Chang Fengyun, Duan Yizhong, Chai Guaiqiang, Jia Lei, Chen Tao. Effects of Film Mulching on Rhizosphere Soil Microbial Community of Maize in Wind-Sand Grassy Beach Area of Northern Shaanxi Province [J]. Crops, 2024, 40(3): 238-246.
[13] Qing Chen, Liu Zhengxue, Li Yanjie. Effects of Compound Microbial Fertilizer on Drought Resistance of Maize Seedlings under Drought Stress by Transcriptome Analysis [J]. Crops, 2024, 40(3): 32-39.
[14] Ma Hongzhen, Xu Haitao, Wang Yue, Feng Xiaoxi, Xu Bo, Zhang Jungang, Guo Haibin, Wang Youhua. Analysis of Genetic Diversity and Genetic Distance of Maize Inbred Lines Based on Phenotypic Traits of Husks [J]. Crops, 2024, 40(3): 54-63.
[15] Quan Chengzhe, Li Shufang, Li Henan, Yu Wei, Jin Jinghua. Genetic Diversity Study of Phenotypic Traits of 73 Rice Varieties by Approved in Jinlin Province [J]. Crops, 2024, 40(3): 64-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!