Crops ›› 2024, Vol. 40 ›› Issue (4): 62-70.doi: 10.16035/j.issn.1001-7283.2024.04.008

;

Previous Articles     Next Articles

Identification of Salt Tolerance of 211 Maize Inbred Lines at Germination Stage

Liu Qianqian1(), Li Ran1, Zhou Tingfang1,2, Zhang Ze1,2, Shangguan Xiaochuan1,2, Pan Yue1, Zhang Degui1, Yong Hongjun1, Li Mingshun1, Han Jienan1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2024-02-07 Revised:2024-03-29 Online:2024-08-15 Published:2024-08-14

Abstract:

This study aimed to evaluate the salt tolerance of 211 maize inbred lines during the germination stage. Treatments with 150 mmol/L NaCl and control (distilled water) were set up. Various parameters such as germination rate, fresh weight per plant, dry weight per plant, and moisture content on the 7th day of treatments were measured. The comprehensive salt-tolerance index (D) was calculated using the membership function and principal component analysis. The D values were then clustered using R language, resulting in the classification of maize inbred lines into six groups including highly salt sensitivive, moderately salt sensitivive, salt sensitivive, salt tolerance, and moderately salt tolerance categories. The findings revealed that salt stress had negative effects on the germination rate, fresh weight per plant, and moisture content of maize, while it increased the dry weight per plant. The salt tolerance varied greatly among different inbred lines, with D values ranging from 0.15 to 0.77. Specifically, there were 24, 53, 41, 39, 37, and 17 inbred lines in the highly salt sensitive, moderately salt sensitive, salt sensitive, salt tolerance, moderately salt tolerance, and highly salt tolerant groups, respectively. The highly salt tolerant lines accounted for 8.06% of the tested inbred lines. Furthermore, a comparison of the control and salt-treated groups showed that the germination rate alone was not effective in distinguishing salt tolerance among maize inbred lines. Approximately 30% of the lines exhibited a significant increase in dry weight under salt treatment. Compared to salt sensitive lines, salt tolerance lines were less affected in terms of fresh weight per plant and could maintain higher moisture content. Further the analysis of five highly salt tolerant and five highly salt sensitive inbred lines indicated that relative fresh weight per plant and relative moisture content were suitable primary indicators for screening salt tolerant inbred lines during the germination stage. The classification of salt tolerance grades based on the D value was found to be reasonable.

Key words: Maize, Inbred line, Germination stage, Comprehensive salt-tolerance index, Salt tolerance

Fig.1

Phenotype of maize seedlings after seven days of CK and salt treatments"

Table 1

Statistical analysis of salt-tolerance indexes of maize inbred lines under different treatments"

处理
Treatment
耐盐指标
Salt-tolerance index
最小值
Minimum
最大值
Maximum
均值
Average
标准偏差
Standard deviation
方差
Variance
变异系数
Coefficient of variable (%)
对照CK 发芽率 (%) 22.50 100.00 74.20a 0.00~0.34 0.03 22.51
单株鲜重 (g) 0.63 1.73 1.14a 0.01~0.30 0.04 18.39
单株干重 (g) 0.02 0.24 0.16a 0.00~0.04 0.00 20.67
含水率 (%) 78.52 98.25 85.74a 0.00~0.04 0.00 2.96
150 mmol/L NaCl 发芽率 (%) 20.00 100.00 73.50a 0.00~0.30 0.04 25.46
单株鲜重 (g) 0.52 1.46 0.97b 0.00~0.34 0.03 17.92
单株干重 (g) 0.07 0.27 0.18b 0.00~0.07 0.00 18.62
含水率 (%) 71.52 87.66 81.40b 0.00~0.09 0.00 3.51

Table 2

Eigenvectors and contribution rates of principal components of each index"

耐盐指标
Salt-tolerance index
主成分
Principal component
1 2 3 4
相对发芽率Relative germination rate -0.18 0.35 0.94 -0.07
相对单株鲜重
Relative fresh weight per plant
0.44 0.47 -0.11 -2.22
相对单株干重
Relative dry weight per plant
-0.21 0.64 -0.42 1.78
相对含水率Relative moisture content 0.56 -0.03 0.23 2.37
特征值Eigenvalue 1.71 1.33 0.89 0.07
贡献率Contribution rate (%) 42.76 33.27 22.16 1.82

Fig.2

Cluster map of salt tolerance of 211 maize inbred lines at germination stage Red, blue, green, yellow, purple and orange plates correspond to highly salt sensitive, moderately salt sensitive, salt sensitive, salt tolerance, moderately salt tolerance and highly salt tolerance groups, respectively."

Table 3

The results of salt tolerance of 211 maize inbred lines"

耐盐类型Salt-tolerant type 数量Number DD value 均值Average 占比Proportion (%)
高度盐敏感型Highly salt sensitive type 24 0.15~0.36 0.32 11.37
中度盐敏感型Moderately salt sensitive type 53 0.36~0.42 0.39 25.12
盐敏感型Salt sensitive type 41 0.42~0.46 0.44 19.43
耐盐型Salt tolerance type 39 0.46~0.50 0.48 18.48
中度耐盐型Moderately salt tolerance type 37 0.50~0.56 0.53 17.54
高度耐盐型Highly salt tolerance type 17 0.56~0.77 0.62 8.06

Table 4

Proportion of inbred lines with extremely significant and significant differences between NaCl treatment and control in all inbred lines"

耐盐指标
Salt-tolerance index
达极显著差异的自交系
Inbred lines with
extremely significant
difference
达极显著的自交系占比
The proportion of inbred
lines with extremely
significant difference (%)
达显著差异的自交系
Inbred lines with
significant
difference
达显著差异的自交系占比
The proportion of
inbred lines with
significant difference (%)
总占比
Total
proportion
(%)
发芽率Germination rate 1份增加 0.47 6份增加,8份降低 6.64 7.11
单株鲜重Fresh weight per plant 35份降低 16.59 48份降低 22.75 39.34
单株干重Dry weight per plant 22份增加,1份降低 10.90 37份增加 17.54 28.44
含水率Moisture content 88份降低 41.71 66份降低 31.28 72.99

Table 5

Proportion of inbred lines with significant and extremely significant indexes in various populations under salt treatment %"

耐盐指标
Salt-tolerance
index
高度盐敏感型
Highly salt
sensitive type
中度盐敏感型
Moderately salt
sensitive type
盐敏感型
Salt sensitive
type
耐盐型
Salt tolerance
type
中度耐盐型
Moderately salt
tolerance type
高度耐盐型
Highly salt
tolerance type
发芽率Germination rate 8.33 9.43 2.44 5.13 10.81 5.88
单株鲜重Fresh weight per plant 58.33 56.60 41.46 23.08 24.32 23.53
单株干重Dry weight per plant 25.00 28.30 36.59 25.64 21.62 35.29
含水率Moisture content 75.00 88.68 80.49 69.23 56.76 47.06

Fig.3

Relative values of four salt tolerance indexes of inbred lines with highly salt tolerance and highly salt sensitivity *:P < 0.05."

Fig.4

Four salt-tolerance indexes of inbred lines with highly salt tolerance and highly salt sensitive “*”and“**”indicate significant differences at the levels of P < 0.05 and P < 0.01, respectively."

[1] 方鹏. 苗期2份不同耐盐玉米自交系差异分析及生物学特性研究. 兰州: 甘肃农业大学, 2018.
[2] 姜佩弦, 张凯, 王艺桥, 等. 玉米耐盐分子机制研究进展. 植物遗传资源学报, 2022, 23(1):49-60.
[3] 张书兴. 黄淮海地区不同青贮玉米品种的耐盐性评价与转录组学分析. 洛阳: 河南科技大学, 2022.
[4] Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 2013, 112(7):1209-1221.
doi: 10.1093/aob/mct205 pmid: 24085482
[5] Jan A, Osman M B. Amanullah. Response of chickpea to nitrogen sources under salinity stress. Journal of Plant Nutrition, 2013, 36(9):1373-1382.
[6] Dai A. Increasing drought under global warming in observations and models. Nature Climate Change, 2012, 3(1):52-58.
[7] 蔡晓锋, 胡体旭, 叶杰, 等. 植物盐胁迫抗性的分子机制研究进展. 华中农业大学学报, 2015, 34(3):134-141.
[8] Wang J, Yao L, Li B, et al. Comparative proteomic analysis of cultured suspension cells of the halophyte halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress. Frontiers in Plant Science, 2016, 7:110.
doi: 10.3389/fpls.2016.00110 pmid: 26904073
[9] 王明泉, 李春霞, 龚士琛, 等. 玉米自交系苗期耐盐性鉴定及筛选研究. 中国农学通报, 2018, 34(12):30-35.
doi: 10.11924/j.issn.1000-6850.casb17120079
[10] Takehisa H, Shimodate T, Fukuta Y, et al. Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Research, 2004, 89(1):85-95.
[11] 姚建英. 不同玉米品种对滨海盐渍土胁迫的响应及其耐盐性鉴定. 邯郸: 河北工程大学, 2019.
[12] Bao Y X, Zhao R, Li F F, et al. Simultaneous expression of spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic lolium perenne. Plant Molecular Biology Reporter, 2011, 29(2):379-388.
[13] 肖万欣, 赵海岩, 刘晶, 等. 不同玉米杂交种耐盐碱性鉴定. 玉米科学, 2011, 19(6):14-19,24.
[14] 韩岱, 时晓磊, 丁孙磊, 等. 60份大豆种质资源苗期耐盐性鉴定评价. 大豆科学, 2023, 42(4):494-505.
[15] Luo M J, Zhao Y X, Zhang R Y, et al. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biology, 2017, 17(1):140-150.
doi: 10.1186/s12870-017-1090-7 pmid: 28806927
[16] 陈祥静, 朱庆琳, 朱嘉, 等. 39份玉米自交系的芽苗期耐盐性评价. 山东农业科学, 2023, 55(5):35-41.
[17] 张会丽. 不同玉米品种(系)抗旱耐盐碱差异及适应性研究. 银川: 宁夏大学, 2018.
[18] Khan A A, Rao S A, McNeilly T. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica, 2003, 131(1):81-89.
[19] 保杰. NaCl胁迫对3个玉米自交系萌动种子中Na+、K+、Ca2+含量的影响. 乡村科技, 2020, 11(25):93-94.
[20] 朱志明. 不同玉米自交系对盐胁迫的响应及其耐盐性鉴定. 银川: 宁夏大学, 2017.
[21] 贾丹莉, 杨治平, 郭军玲, 等. 6种玉米品种耐盐性筛选. 中国农学通报, 2017, 33(11):1-8.
doi: 10.11924/j.issn.1000-6850.casb16080094
[22] 王婧泽, 高树仁, 孙丽芳, 等. 3个玉米自交系对盐胁迫的生理响应及耐盐性评价. 干旱地区农业研究, 2017, 35(2):89-95.
[23] 张海艳, 赵海军. 不同品种玉米萌发期和苗期耐盐性综合评价. 玉米科学, 2016, 24(5):61-67.
[24] 阿提开姆·麦麦提, 顾炜, 于典司, 等. 基于隶属函数法的玉米种质资源苗期耐盐性评价. 上海农业学报, 2023, 39(5):54-60.
[25] 段雅娟, 曹士亮, 于滔, 等. 玉米自交系萌发期耐盐性鉴定. 作物杂志, 2022(1):213-219.
[26] 中华人民共和国农业农村部. 中国农业统计资料. 北京: 中国农业出版社, 2015.
[27] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2019.
[28] 刘鸿. 不同玉米品种对盐胁迫的响应及耐盐品种的筛选. 阿拉尔: 塔里木大学, 2023.
[29] 张军, 刘英, 杨生鹏, 等. 商洛主栽小麦品种苗期的耐盐性评价. 西北农业学报, 2017, 26(8):1148-1155.
[30] 邱鹏程, 苗永茂, 杜永春, 等. 16个玉米品种萌芽期耐旱性和耐盐性评价. 北方农业学报, 2021, 49(2):11-16.
doi: 10.12190/j.issn.2096-1197.2021.02.02
[31] 张军, 张侂, 朱静, 等. 商洛主栽玉米品种萌发期耐盐性评价. 陕西农业科学, 2021, 67(8):70-72,77.
[32] 于莹, 张树权, 郭永利, 等. 31份玉米自交系萌发期耐盐碱性综合评价. 东北农业大学学报, 2018, 49(9):9-19.
[33] 刘春荣, 张国新, 王秀萍. 主成分分析及隶属函数法综合评价玉米苗期耐盐性. 安徽农业科学, 2015(28):13-14.
[34] 杨小英, 许莹莹, 赵美爱, 等. 模拟干旱条件下玉米品种萌发期抗旱性评价. 玉米科学, 2019, 27(6):25-30.
[35] 王秀华, 张寒, 潘香逾, 等. 玉米成株期耐盐性评价与耐盐资源筛选. 分子植物育种, 2020, 18(2):685-692.
[36] 鲁珊, 阎旭东, 毛彩云, 等. 萌发期低盐对4份玉米自交系的影响. 作物研究, 2020, 34(1):37-39.
[37] 蒋宇杰. 植物耐盐生理机制及耐盐性研究进展. 农业灾害研究, 2023, 13(7):20-22.
[38] 申世铭. 玉米幼芽盐胁迫处理提高后代耐盐性分析. 泰安: 山东农业大学, 2020.
[39] 赵韦. 土壤盐碱化对玉米胁迫的研究进展. 黑龙江农业科学, 2019(1):140-143.
[40] 王明泉, 付立新, 李国良, 等. 玉米抗感种质资源苗期耐盐性的光合作用机制研究. 中国农学通报, 2021, 37(5):8-14.
doi: 10.11924/j.issn.1000-6850.casb2020-0047
[41] 沈丹丹, 程文, 王志武, 等. 我国玉米耐盐种质研究现状与展望. 山东农业科学, 2018, 50(11):163-167.
[42] 刘鸿, 张富来, 田慧娟, 等. 不同玉米品种萌发期及苗期的耐盐性研究. 种子, 2023, 42(3):56-62,69.
[43] 张威, 廖锡良, 喻德跃, 等. 大豆耐盐性研究进展. 土壤与作物, 2018, 7(3):284-292.
[44] 李俊萍, 王秀萍, 刘素娟, 等. 玉米苗期耐盐性鉴定评价方法研究. 中国农学通报, 2022, 38(18):28-34.
doi: 10.11924/j.issn.1000-6850.casb2021-0777
[45] 罗敏, 张荣, 吴翠萍, 等. 玉米幼苗期耐盐性评价适宜盐浓度的研究. 天津农学院学报, 2015, 22(1):6-9.
[46] 匡朴. 盐胁迫对不同耐盐性玉米品种萌发、苗期生长及产量的影响. 泰安: 山东农业大学, 2018.
[47] 王明泉. 寒地玉米种质资源苗期耐盐性评价与耐盐机制研究. 大庆: 黑龙江八一农垦大学, 2019.
[48] 程玉静, 孙权星, 彭长俊, 等. 2种不同基因型玉米苗期盐胁迫反应及耐盐性研究. 上海农业学报, 2012, 28(2):53-58.
[49] 线进红, 张云芳, 庄泽龙, 等. 42份玉米自交系苗期耐盐性的综合评价. 甘肃农业大学学报, 2023, 58(4):95-105.
[50] 鲁珊, 阎旭东, 毛彩云, 等. 玉米杂交种DK516亲本的耐盐性研究. 作物研究, 2019, 33(1):18-22.
[1] Ma Yanhua, Sun Dequan, Li Suiyan, Lin Hong, Pan Liyan, Li Donglin, Fan Jinsheng, Wu Jianzhong, Yang Guowei. Comprehensive Evaluation of Main Agronomic Traits and Screening of Excellent Germplasms of Maize Landraces in Heilongjiang Province [J]. Crops, 2024, 40(4): 103-112.
[2] Yang Ke, Jiang Chunxia, Zhang Wei, Liu Enke, Zhai Guangqian, Zhang Dongmei. Study on the Effects of Different Treatments on Mechanical Harvest Broken Rate of Maize Grains [J]. Crops, 2024, 40(4): 138-143.
[3] Li Shiqing, Zhang Peng, Gong Dan, Wang Suhua, Zhang Yaowen, Wang Lixia. Salt Tolerance Evaluation of New Mung Bean Varieties at Germination Stage [J]. Crops, 2024, 40(4): 188-193.
[4] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
[5] Li Qingchao, Zhang Dengfeng, Li Chunhui, Yang Shan, Liu Jianxin, Wu Xun. Genetic Diversity Analysis and Comprehensive Evaluation of Maize Landraces in Southwest China [J]. Crops, 2024, 40(4): 24-32.
[6] Li Chunqing, Liu Xiangyu, Yan Peng, Zhou Liuqian, Lu Lin, Dong Zhiqiang, Xu Jiang. Physiological Identification and Comprehensive Evaluation of Drought Resistance of Different Maize Varieties [J]. Crops, 2024, 40(4): 253-262.
[7] Wang Lu, Deng Jie, Zhang Ze, Zhao Mengwei, Che Xinyang, Wang Guangyi, Guo Xu, Zhang Haiyang, He Lin, Weng Jianfeng, Xu Jingyu. Identification and Evaluation of Drought Tolerant Germplasm Resources at Seedling Stage of Maize under PEG Stress [J]. Crops, 2024, 40(4): 43-53.
[8] Xie Huifang, Wei Menghan, Song Zhongqiang, Liu Jinrong, Wang Suying, Xing Lu, Wang Shujun, Liu Haiping, Jia Xiaoping, Song Hui. Analyzing of the Mixed Inheritance Model of Major Gene Plus Polygene of Main Traits in Foxtail Millet [J]. Crops, 2024, 40(4): 82-89.
[9] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[10] Zhang Lin, Wu Wenming, Zhou Dengfeng, Peng Chen, Wang Shiji. Responses of Growth and Yield of Fresh-Eating Maize “Caitiannuo 100” to Autumn Sowing Date under Facility Cultivation [J]. Crops, 2024, 40(3): 175-179.
[11] Xu Rongqiong, Zhang Yifei, Du Jiarui, Yin Xuewei, Yang Kejun, Sun Yishan, Li Zesong, Li Guibin, Lu Yuxin, Liu Haichen, Li Weiqing, Li Jiayu. Effects of Foliar Spraying Calcium Fertilizer on Lodging Resistance and Yield Formation of Spring Maize [J]. Crops, 2024, 40(3): 223-230.
[12] Li Jiaqi, Shi Jianguo, Chen Qihang, Chang Fengyun, Duan Yizhong, Chai Guaiqiang, Jia Lei, Chen Tao. Effects of Film Mulching on Rhizosphere Soil Microbial Community of Maize in Wind-Sand Grassy Beach Area of Northern Shaanxi Province [J]. Crops, 2024, 40(3): 238-246.
[13] Qing Chen, Liu Zhengxue, Li Yanjie. Effects of Compound Microbial Fertilizer on Drought Resistance of Maize Seedlings under Drought Stress by Transcriptome Analysis [J]. Crops, 2024, 40(3): 32-39.
[14] Ma Hongzhen, Xu Haitao, Wang Yue, Feng Xiaoxi, Xu Bo, Zhang Jungang, Guo Haibin, Wang Youhua. Analysis of Genetic Diversity and Genetic Distance of Maize Inbred Lines Based on Phenotypic Traits of Husks [J]. Crops, 2024, 40(3): 54-63.
[15] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!