作物杂志, 2023, 39(2): 163-170 doi: 10.16035/j.issn.1001-7283.2023.02.024

生理生化·植物营养·栽培耕作

大麻二酚对Cd和Cr胁迫下烟草生长的影响

管娇,, 樊兴荣, 邹红旭, 杨嘉玲, 王丽华, 翁玉仙, 保志娟,

云南农业大学烟草学院,650201,云南昆明

Effects of Cannabidiol on Tobacco Growth under Cd and Cr Stress

Guan Jiao,, Fan Xingrong, Zou Hongxu, Yang Jialing, Wang Lihua, Weng Yuxian, Bao Zhijuan,

College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China

通讯作者: 保志娟,主要从事烟草分析及烟草有害成分研究,E-mail:baozhijuan@aliyun.com

收稿日期: 2022-02-17   修回日期: 2022-07-28   网络出版日期: 2022-10-08

基金资助: 国家自然科学基金(32160418)
云南省科技计划农业联合面上项目(2017FG001-063)
云南省教育厅科学研究基金研究生项目(2020Y161)

Received: 2022-02-17   Revised: 2022-07-28   Online: 2022-10-08

作者简介 About authors

管娇,主要从事烟草重金属污染与防治,E-mail:2374641485@qq.com

摘要

为探讨大麻二酚(CBD)对重金属胁迫下烟草生长的影响,以烟草品种K326为材料,分别将浓度为0.0、1.0、5.0、25.0mg/L的CBD喷施于Cd和Cr胁迫烟株叶面,测定其叶片的抗氧化指标、生物量及Cd、Cr积累量。结果表明,Cd和Cr胁迫严重抑制烟株生长,显著提高烟叶活性氧和重金属含量。外源CBD对烟株生长存在低促高抑作用。当CBD浓度分别为1.0mg/L(Cd)和5.0mg/L(Cr)时效果最佳,显著降低了烟叶超氧阴离子(O2-·)产生速率,丙二醛、H2O2和烟株Cd、Cr含量;显著提高烟株干重、叶片超氧化物歧化酶、过氧化物酶、多酚氧化酶、抗坏血酸过氧化物酶和谷胱甘肽还原酶活性,增加抗坏血酸(AsA)、谷胱甘肽(GSH)含量以及AsA/DHA(氧化型抗坏血酸)、GSH/GSSG(氧化型谷胱甘肽)。综上,适量CBD能有效缓解Cd和Cr胁迫对烟叶的氧化损伤,抑制烟株内重金属的积累,促进植株生长。

关键词: 大麻二酚; 重金属胁迫; 烟草; 抗氧化; AsA-GSH循环

Abstract

This work was conducted to explore the effects of cannabidiol (CBD) on the growth and development of tobacco under heavy metal stress. Using tobacco variety K326 as material, the CBD solutions of four different concentrations (0.0, 1.0, 5.0, 25.0mg/L) were sprayed on the leaf surface in Cd-stressed and Cr-stressed tobacco plants, respectively. The biomass, Cd and Cr accumulation of tobacco plants, and antioxidant indexes in leaves were determined after treatments. The results showed that, Cd and Cr stress seriously inhibited the growth of tobacco and increased the accumulation of Cd and Cr in plants. Exogenous CBD appeared low concentrations promotion and high concentration inhibition on tobacco growth. The application of 1.0mg/L (Cd) and 5.0mg/L (Cr) CBD significantly reduced the production rate of O2-· and H2O2 in tobacco leaves, Cd and Cr contents in plants, while remarkably increased the shoot and root dry weight of tobacco, the activities of superoxide dismutase, peroxidase, polyphenol oxidase, ascorbic acid peroxidase and glutathione reductase, and improved the contents of ascorbic acid (AsA) and glutathione (GSH), as well as AsA/DHA (dehydroascorbate) and GSH/ GSSG (oxidized glutathione). In conclusion, an appropriate amount of exogenous CBD could effectively alleviate the oxidative damage caused by heavy metal stress, inhibit the accumulation of heavy metals in tobacco plants and promote plants growth.

Keywords: Cannabidiol; Heavy metal stress; Nicotiana tabacum L.; Antioxidation; AsA-GSH cycle

PDF (573KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

管娇, 樊兴荣, 邹红旭, 杨嘉玲, 王丽华, 翁玉仙, 保志娟. 大麻二酚对Cd和Cr胁迫下烟草生长的影响. 作物杂志, 2023, 39(2): 163-170 doi:10.16035/j.issn.1001-7283.2023.02.024

Guan Jiao, Fan Xingrong, Zou Hongxu, Yang Jialing, Wang Lihua, Weng Yuxian, Bao Zhijuan. Effects of Cannabidiol on Tobacco Growth under Cd and Cr Stress. Crops, 2023, 39(2): 163-170 doi:10.16035/j.issn.1001-7283.2023.02.024

土壤重金属污染不利于农业可持续发展,且严重威胁着人体健康[1]。烟草是我国的经济作物,易富集Cd和Cr等重金属。大量的Cd和Cr进入烟株内,会破坏叶片细胞氧化还原系统,活性氧(ROS)大量积累,烟株内部代谢紊乱,生长被抑制[2]。植物在应对重金属胁迫时,会启动酶促和非酶促两大防御系统来清除过量ROS[3]以抵御或减轻胁迫对细胞的损伤。抗坏血酸―谷胱甘肽(AsA-GSH)循环是植物维持氧化还原平衡的重要途径,它由抗氧化剂AsA、GSH及其关键酶抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)等组成[4]。植株体内抗氧化酶和AsA-GSH循环中各物质的变化是植物抗逆性的重要指标。

由于见效快、成本低,施加植物激素(水杨酸、脱落酸、褪黑素等)和小分子有机物(如AsA、GSH)等[5]外源调节物质已成为缓解植物重金属胁迫的研究热点之一。酚类物质一般具有强抗氧化性、螯合重金属及稳定细胞膜等功能[6],近年来受到研究者的关注。外源茶多酚[7]、褐藻多酚[8]和麝香草酚[9]能提高植株抗氧化酶活性,减少ROS,降低氧化损伤,缓解植物逆境胁迫。

工业大麻(Cannabis sativa L.)是一种生长快速、根系庞大且生物量高的植物,对重金属耐受性好,被应用于修复土壤重金属污染[10]。大麻二酚(cannabidiol,CBD)是工业大麻的主要活性成分,具有抗炎、抗氧化、抗凋亡和抗癌等活性作用,在医疗[11](神经系统、肿瘤等疾病)领域和护肤品行业[12]有着巨大的应用潜力。CBD在机体内能够通过调节抗氧化酶活性、抗氧化物质含量[13-14]和细胞内锌离子浓度维持氧化平衡;或利用自身的强还原性直接清除ROS等方式应对氧化应激损伤,但CBD对植物生长发育的作用及提高植物重金属抗性的研究鲜见报道。为此,本文以烟草为研究对象,探讨外源喷施CBD对Cd和Cr胁迫下烟株生长和抗氧化系统的影响,以期为CBD的应用及植物重金属防控提供依据和参考。

1 材料与方法

1.1 试验材料

供试烟草品种为K326(玉溪中烟种子有限责任公司)。二水乙酸镉由天津市科密欧化学试剂有限公司提供,重铬酸钾由西陇化工股份有限公司提供。CBD购买于云南汉盟制药有限公司,纯度为99%。试验土壤为红壤土,采自云南自然背景低肥力土壤,装盆前过2mm筛,充分混匀。土壤pH 6.84、有机质6.97g/kg、有效磷11.56mg/kg、速效钾101.33mg/kg、碱解氮18.91mg/kg、全铬(Cr)84.24mg/kg、全镉(Cd)0.27mg/kg,Cr和Cd均低于GB 15618-2018《土壤环境质量农用地土壤污染风险管控标准(试行)》规定的土壤污染风险筛选值(Cr 200mg/kg,Cd 0.3mg/kg,6.5<pH≤7.5)。

1.2 试验设计

盆栽试验于2021年5-7月在云南农业大学烟草学院设施大棚内进行。Cd和Cr土壤添加浓度分别设置为60和90mg/kg,CBD浓度为0.0、1.0、5.0和25.0mg/L,无Cd、Cr胁迫且无CBD处理为对照(CK),共9个处理,每个处理重复5盆。Cd、Cr分别用适量二水乙酸镉和重铬酸钾配制成1L水溶液,于移栽前2个月以模拟污灌的方式一次性施入装有10kg风干过筛土的花盆(上下口径、高度为34cm×19cm×23cm,下置接水盘)中,之后每天浇适量水以保持土壤湿润,并于移栽前混匀。将漂浮育苗培育的烟草壮苗(苗龄55d)移栽入花盆,环施45g烟草专用复合肥[m(N): m(P2O5):m(K2O)=15:15:18]作基肥。后期正常管理,视土壤干湿情况定期浇水、除草。移栽后50d,于上午第1次喷施CBD于叶片正反面,以湿润不流滴为宜,3d后喷施第2次。间隔3d后,用打孔器均匀地取一定质量的中部叶(自上而下7、8位叶)保存到液氮中,用于生理指标测定,剩余部分继续生长30d后采收,测定生物量和重金属含量。CBD溶液的配制,采用含0.1%的二甲基亚砜和0.07%的吐温80混合水溶液溶解而成。

1.3 测定项目及方法

参照赵明香等[15]的方法测定超氧化物歧化酶(SOD)、过氧化物酶(POD)、多酚氧化酶(PPO)活性和丙二醛(MDA)含量;参照李忠光[16]的方法测定超氧阴离子(O2-·)、H2O2、AsA、氧化型抗坏血酸(DHA)含量及APX活性;使用苏州格锐思生物有限公司试剂盒测定GR活性、GSH和氧化型谷胱甘肽(GSSG)含量。

于移栽后80d,各处理选取3株分部位收获,先用自来水洗净根、茎、叶表面的土壤,然后用0.01mol/L EDTA与去离子水洗净植株,用滤纸吸干水分,于105℃下杀青30min,65℃烘干至恒重,称量每株烟地上、地下部分干质量。将干燥后样品混合均匀,采用电感耦合等离子体质谱法测定各部位中的Cd和Cr含量。

耐受系数=各处理烟株地上(下)部生物量/对照烟株地上(下)生物量;转运系数(translocation factor,TF)=烟株地上部分Cd或Cr含量/地下部分Cd或Cr含量;富集系数=植物地上(或地下)部Cd或Cr含量/土壤中Cd或Cr含量;单株富集量=单株生物量×单株Cd或Cr含量。

1.4 数据处理

采用Origin 2018和SPSS 25软件进行统计分析及差异显著性检验。对不同处理的数据进行单因素方差分析(ANOVA)和Duncan多重比较(P<0.05)。数据以平均值±标准差表示。采用Pearson法进行相关性分析。

2 结果与分析

2.1 CBD对Cd和Cr胁迫下烟株生物量的影响

表1可知,Cd和Cr胁迫下,烟株生物量显著降低。但随CBD浓度增加,烟株干重和重金属耐性均先增加后降低。Cd胁迫下,1.0mg/LCBD处理烟株干重最大,分别比单一Cd处理显著提高13.93%(地上)和31.63%(地下)。Cr胁迫下,5mg/L CBD处理效果最佳,烟株干重和耐受系数分别比单一Cr处理显著提高21.97%和21.92%(地上)、26.03%和25.97%(地下)。而25.0mg/L CBD处理时,烟株干重和耐受系数均与单独Cd、Cr处理无显著差异。

表1   CBD对Cd和Cr胁迫下烟株生物量的影响

Table 1  Effects of CBD on tobacco biomass under Cd and Cr stress

重金属
Heavy metal
(mg/kg)
CBD浓度
CBD concentration
(mg/L)
干重(g/株)Dry weight (g/plant)耐受系数Tolerance coefficient
地上部分
Upper ground
地下部分
Under ground
地上部分
Upper ground
地下部分
Under ground
CK51.47±0.82a7.62±0.38a
Cd (60)0.041.00±1.17c5.47±0.44c0.80±0.03b0.72±0.09b
1.046.71±1.02b7.20±0.46a0.91±0.02a0.94±0.06a
5.042.81±1.18c7.04±0.62ab0.83±0.01b0.92±0.08a
25.041.91±1.05c6.18±1.05bc0.81±0.03b0.81±0.10ab
Cr (90)0.037.68±0.68d5.84±0.24b0.73±0.00c0.77±0.01b
1.039.47±0.78c6.32±0.28b0.77±0.01b0.83±0.04b
5.045.96±0.48b7.36±0.28a0.89±0.02a0.97±0.06a
25.038.11±0.69d6.47±0.45b0.74±0.00c0.85±0.06b

不同小写字母表示处理间差异显著(P < 0.05),下同

Different lowercase letters indicate significant difference between treatments (P < 0.05), the same below

新窗口打开| 下载CSV


2.2 CBD对Cd和Cr胁迫下烟株吸收Cd和Cr情况的影响

表2可知,单独Cd和Cr胁迫下,烟株体内的Cd、Cr积累量大幅增加,分别是对照的19.73倍和1.85倍,且Cd含量地上部>地下部,而Cr含量则是地上部<地下部。烟株地上部、地下部Cd的富集系数分别为0.630~0.750、0.210~0.300,Cr分别为0.010~0.013、0.130~0.250。喷施适量的CBD能显著降低烟株中Cd和Cr积累量,但会提高Cd、Cr的转运系数。1.0mg/L CBD处理烟株地下部Cd含量最低,比单独Cd处理显著降低了30.00%,转运系数却显著增加了20.00%;而不同浓度CBD处理烟株的地上部Cd含量没有显著差异。1.0mg/L CBD处理地上部和5.0mg/L CBD处理地下部Cr含量最低,分别比单一胁迫降低了22.17%和47.72%。所有处理中Cr的转运系数均低于0.1,说明Cr主要富集在根部,只有微量转向地上部分。

表2   CBD对Cd和Cr胁迫下烟株吸收Cd、Cr情况的影响

Table 2  Effects of CBD on Cd and Cr absorption of tobacco under Cd and Cr stress

重金属
Heavy
mental
(mg/kg)
CBD浓度
CBD
concentration
(mg/L)
Cd或Cr含量
Content of Cd or Cr (mg/kg DW)
富集系数
Bioaccumulation factor
Cd/Cr
TF
Cd或Cr单株积累量
Cd or Cr accumulation
per plant (mg)
地上部分
Upper ground
地下部分
Under ground
地上部分
Upper ground
地下部分
Under ground
CK0.86±0.03c1.68±0.06d0.51±0.01c0.15±0.08d
Cd (60)0.045.41±1.39a18.18±0.30a0.750±0.02a0.300±0.00a2.50±0.11b2.96±0.14a
1.038.24±0.79b12.76±0.33c0.630±0.01b0.210±0.01c3.00±0.14a2.75±0.05b
5.037.92±1.22b13.10±0.10c0.630±0.02b0.220±0.00c2.89±0.07a2.54±0.03c
25.038.30±2.06b15.93±0.21b0.640±0.03b0.260±0.00b2.41±0.13b2.61±0.05c
CK1.40±0.06d16.49±0.31e0.08±0.00b1.06±0.00d
Cr (90)0.02.30±0.10a42.71±1.33a0.013±0.00a0.250±0.01a0.05±0.00d1.96±0.06a
1.01.79±0.05c26.76±0.41c0.010±0.00c0.150±0.00c0.07±0.00c1.31±0.04c
5.02.08±0.11b22.33±0.76d0.012±0.00b0.130±0.00d0.09±0.01a1.30±0.04c
25.02.15±0.09ab32.94±0.38b0.012±0.00b0.190±0.00b0.07±0.00c1.56±0.03b

新窗口打开| 下载CSV


2.3 CBD对Cd和Cr胁迫下烟草叶片膜脂过氧化的影响

图1可知,喷施中低浓度CBD(1.0和5.0mg/L)可显著降低Cd和Cr胁迫烟叶中活性氧和MDA含量。1.0mg/L CBD处理烟叶O2-·产生速率、H2O2和MDA含量分别比单独Cd显著降低31.75%、29.36%和14.40%。Cr胁迫下,5.0mg/L CBD处理O2-·产生速率和MDA含量最低,比单独Cr处理降低了29.21%和9.67%。而25.0mg/L CBD处理加重了叶片膜脂过氧化,其中MDA含量高于单独重金属处理。

图1

图1   CBD对Cd和Cr胁迫下烟叶中O2-·产生速率以及H2O2和MDA含量的影响

不同小写字母表示处理间差异显著(P < 0.05),下同

Fig.1   Effects of CBD on O2-· production rate, H2O2 and MDA contents in tobacco leaves under Cd and Cr stress

Different lowercase letters indicate significant difference (P < 0.05) between treatments, the same below


2.4 CBD对Cd和Cr胁迫下烟草叶片抗氧化酶活性的影响

图2可知,Cd和Cr胁迫抑制了叶片中SOD、POD和PPO活性。随CBD浓度增加,叶片内抗氧化酶活性均先增后减。Cd胁迫下,1.0mg/L CBD处理使POD和PPO活性比单独Cd处理显著增加了10.59%和34.91%,5.0mg/L CBD处理使SOD活性提高了56.80%。Cr胁迫下,1.0mg/L CBD处理SOD和POD活性最高,分别比Cr处理显著提高17.40%和33.64%;5.0mg/L CBD处理的PPO活性显著提高29.60%。高浓度CBD(25.0mg/L)处理对Cd和Cr胁迫下烟草叶片酶活性的促进作用不显著,甚至还会产生抑制效果。

图2

图2   CBD对Cd和Cr胁迫下烟叶中抗氧化酶活性的影响

Fig.2   Effects of CBD on antioxidant enzyme activities in tobacco leaves under Cd and Cr stress


2.5 CBD对Cd和Cr胁迫下烟叶中AsA-GSH循环的影响

2.5.1 对烟叶AsA和GSH含量、AsA/DHA和GSH/GSSG值的影响

图3可知,Cd和Cr胁迫显著降低了叶片中AsA和GSH含量。喷施CBD可以促进2种抗氧化物质增加,但其促进效果随CBD浓度增加而减弱。Cd胁迫下,1.0mg/L CBD处理使AsA、GSH、AsA/DHA和GSH/GSSG分别比Cd处理显著提高了16.38%、103.17%、63.53%和467.07%。5.0mg/L CBD处理的叶片AsA/DHA和GSH/GSSG分别比单一Cr处理显著提高54.85%和100.19%。

图3

图3   CBD对Cd和Cr胁迫下烟叶AsA、AsA/DHA、GSH和GSH/GSSG的影响

Fig.3   Effects of CBD on AsA, AsA/DHA, GSH and GSH/GSSG in tobacco leaves under Cd and Cr stress


2.5.2 对烟叶APX和GR活性的影响

图4可知,CBD对Cd和Cr胁迫烟叶的APX和GR活性存在低促高抑作用。Cd胁迫下,CBD浓度为1.0mg/L时,APX和GR活性最高,分别比单独Cd处理显著提高68.93%和25.8%,但CBD浓度大于5.0mg/L会对APX活性有显著的抑制作用。Cr胁迫下,CBD浓度为5.0mg/L时效果最佳,APX和GR活性分别比Cr处理显著提高35.58%和13.62%。

图4

图4   CBD对Cd和Cr胁迫下烟叶APX和GR活性的影响

Fig.4   Effects of CBD on APX and GR activity of tobacco leaves under Cd and Cr stress


2.6 CBD浓度与烟叶氧化系统各指标和单株Cd、Cr积累量的相关性分析

表3可知,CBD与烟株Cd、Cr积累量呈负相关。在Cd胁迫下,CBD与叶片POD、PPO活性呈显著负相关,与H2O2含量呈显著正相关,与O2-·产生速率呈极显著正相关。Cr胁迫下,除GSH和MDA外,CBD与其余指标皆呈负相关,其中与H2O2含量呈极显著负相关,与MDA含量呈极显著正相关。

表3   CBD浓度与烟叶氧化系统各指标和单株Cd、Cr积累量的相关系数

Table 3  Correlation coefficient between CBD concentration and indexes of tobacco leaves oxidation system, Cd and Cr accumulation

重金属
Heavy metal
SODPODPPOAsAGSHH2O2O2-·MDACd或Cr积累量
Cd or Cr accumulation amount
Cd-0.267-0.602*-0.619*-0.304-0.4100.699*0.831**0.283-0.500
Cr-0.221-0.430-0.379-0.1640.335-0.876**-0.1990.795 **-0.055

**”表示极显著相关(P < 0.01),“*”表示显著相关(P < 0.05)

**”shows significant correlation at the 0.01 level,“*”shows significant correlation at the 0.05 level

新窗口打开| 下载CSV


2.7 烟叶抗氧化指标与膜脂过氧化指标、单株Cd和Cr积累量的相关性分析

对不同处理烟叶抗氧化指标与膜脂过氧化指标、Cd和Cr单株积累量进行了相关性分析(图5)。由图5a可知,Cd胁迫下,O2-·与PPO、APX活性呈极显著负相关,H2O2含量与PPO、SOD、GSH和GR呈极显著负相关,MDA含量与AsA、GR呈极显著负相关。由图5b可知,Cr胁迫下,O2-·与SOD、POD活性呈极显著正相关,与AsA含量呈显著正相关。H2O2含量与APX活性呈极显著负相关。Cr积累量与SOD活性呈显著负相关,与GSH含量、APX活性、AsA含量、PPO活性和GR活性呈极显著负相关。

图5

图5   Cd (a)、Cr (b)胁迫下烟叶抗氧化指标与膜脂过氧化指标、单株Cd和Cr积累量的相关性分析

“**”表示极显著相关(P < 0.01);“*”表示显著相关(P < 0.05)

Fig.5   Correlation analysis between antioxidant index and membrane lipid peroxidation index of tobacco leaves, Cd and Cr accumulation under Cd (a) and Cr (b) stress

“**”shows significant correlation at the 0.01 level;“*”shows significant correlation at the 0.05 level


3 讨论

植物主要通过根系吸收金属元素并转移到地上部。Cd在烟株中的移动性较好,主要积累在地上部,而Cr的移动性较低,故主要在根部积累。喷施CBD抑制了烟株对重金属的吸收,显著增加了烟株生物量。有学者[17]研究表明,油菜素内酯可以通过稳定植物细胞膜的电化学特性以及酶的活性来影响植物对重金属的吸收,故推测CBD可以发挥其稳定细胞膜的特性,以阻控烟株对Cd和Cr的吸收。另外,CBD可能与水杨酸、油菜素内酯调控植株Cd吸收类似[18-19],通过提高烟株的重金属耐受性,促进重金属胁迫下烟株对养分的吸收利用,改变烟株体内矿物质元素的分布,从而干扰Cd和Cr吸收相关的基因表达以及代谢通路,抑制植株对重金属的吸收。除此之外,植物激素水平[20]、根系分泌物[21]和土壤微生物群落结构[22]的改变,也会影响根系对重金属的吸收,但CBD是否会改变这些因素、其机理如何,有待进一步研究。

在重金属胁迫下,植株中氧化还原平衡被破坏,ROS和MDA大量产生,引发膜脂过氧化,造成细胞膜系统的破坏[23]。本试验发现,CBD浓度与Cd和Cr胁迫下ROS和MDA含量显著相关。中低浓度CBD(1.0、5.0mg/L)能显著降低烟叶中ROS和MDA含量,有效缓解Cd和Cr胁迫对烟株生长发育的危害,提高烟株生物量。但高浓度CBD(25.0mg/L)的缓解作用下降,甚至促进ROS的产生。这与外源水杨酸、褪黑素浓度低时提高植物抗氧化特性,而高浓度产生重度氧化胁迫的结果相似[24-25]

植物在应对氧化损伤时会通过酶促(SOD、POD、PPO、APX、GR)和非酶促(AsA-GSH循环)反应来清除体内过多的ROS。研究表明,SOD可以将O2-·歧化成H2O,POD、APX、GR均可将H2O2还原为H2O和O2[26],PPO能间接降低ROS含量[27],从而降低膜质过氧化损伤。本试验发现,适宜浓度的CBD可以通过提高机体内抗氧化酶活性、降低ROS和MDA含量等方式来提高烟株的氧化应激能力。这与褐藻多酚[8]和茶多酚[28]对重金属胁迫下上海青和玉米的影响一致,说明CBD可能与这2种酚的作用机理类似,通过提高酶活性来清除重金属胁迫诱导产生的ROS,提高烟株抗氧化能力。

AsA可以在APX的催化下将H2O2转化为无害的H2O[29],GSH则通过GR实现循环再生,参与清除ROS,同时GSH可以促进非蛋白质巯基(NPT)和植物螯合肽(PCs)合成,钝化游离金属离子[30]。本试验发现,适宜浓度的外源CBD可以显著提高Cd和Cr胁迫下烟株中AsA和GSH含量,促进AsA-GSH循环进行,同时增加GSH/GSSG,激活植物抗逆基因的表达,以提高烟株的抗重金属胁迫能力[31]。此外,CBD也可以直接参与ROS的清除。即CBD可以间接提高酶促和非酶促物质来清除ROS,同时发挥其还原性来降低膜质过氧化,与CBD在医疗领域的抗病机理相吻合[32]

但CBD对Cd、Cr的缓解效应存在一定差异,对Cd的缓解效果优于Cr,且缓解Cd和Cr胁迫的最佳浓度有差异,这可能是因为Cd和Cr在烟株中的主要积累部位不同,导致二者叶片所受氧化损伤有差异;还有可能与烟株对不同类别重金属胁迫耐受性不同而引起的生理响应不同有关[33]

4 结论

叶面喷施中低浓度的CBD(1.0、5.0mg/L)能激活SOD、POD、PPO、APX和GR活性,提高AsA和GSH含量,清除由Cd和Cr胁迫所产生的ROS,降低膜脂过氧化程度,抑制烟株对重金属的吸收,从而促进烟株生长。但高浓度CBD(25.0mg/L)对重金属胁迫的缓解作用下降,甚至会加剧损伤。由此可见,CBD在抗重金属胁迫方面具有潜在的应用前景,可以通过适当调节CBD的加入水平来缓解重金属对烟草生长发育的伤害。

参考文献

Arora N K, Chauhan R.

Heavy metal toxicity and sustainable interventions for their decontamination

Environmental Sustainability, 2021, 4(1):1-3.

DOI:10.1007/s42398-021-00164-y      [本文引用: 1]

张星雨, 叶志彪, 张余洋.

植物响应镉胁迫的生理与分子机制研究进展

植物生理学报, 2021, 57(7):1437-1450.

[本文引用: 1]

Muhammad A F, Faisal I, Yang C, et al.

Methyl jasmonate alleviates arsenicinduced oxidative damage and modulates the ascorbate-glutathione cycle in oilseed rape roots

Plant Growth Regulation, 2018, 84(1):135-148.

DOI:10.1007/s10725-017-0327-7      URL     [本文引用: 1]

杜昕, 李博, 毛鲁枭, .

褪黑素对干旱胁迫下大豆产量及AsA- GSH循环的影响

作物杂志, 2022(1):174-178.

[本文引用: 1]

史广宇, 余志强, 施维林, .

植物修复土壤重金属污染中外源物质的影响机制和应用研究进展

生态环境学报, 2021, 30 (3):655-666.

DOI:10.16258/j.cnki.1674-5906.2021.03.024      [本文引用: 1]

可下载PDF全文。

翁蔚, 张琴梅, 李书魁, .

植物多酚抗病毒功效及机制研究进展

中华中医药杂志, 2020, 35(12):6236-6240.

[本文引用: 1]

司廉邦, 李嘉敏, 黎桂英, .

茶多酚对盐胁迫下小麦幼苗叶片生理特性的影响

生态学报, 2020, 40(11):3747-3755.

[本文引用: 1]

耿志刚, 韩西红, 赵丽丽, .

褐藻多酚对铅胁迫下上海青生长及抗氧化系统的影响

热带农业工程, 2020, 44(6):82-87.

[本文引用: 2]

宋佳倩, 徐亮, 王悦霖, .

外源添加麝香草酚提高烟草幼苗抵御盐胁迫机理的研究

中国烟草学报, 2021, 27(2):65-71.

[本文引用: 1]

Andrea F, Alessandra F, Giulia S, et al.

Bioaugmented phytoremediation of metal-contaminated soils and sediments by hemp and giant Reed

Frontiers in Microbiology, 2021, 12:645893.

DOI:10.3389/fmicb.2021.645893      URL     [本文引用: 1]

We assessed the effects of EDTA and selected plant growth-promoting rhizobacteria (PGPR) on the phytoremediation of soils and sediments historically contaminated by Cr, Ni, and Cu. A total of 42 bacterial strains resistant to these heavy metals (HMs) were isolated and screened for PGP traits and metal bioaccumulation, and two Enterobacter spp. strains were finally selected. Phytoremediation pot experiments of 2 months duration were carried out with hemp (Cannabis sativa L.) and giant reed (Arundo donax L.) grown on soils and sediments respectively, comparing in both cases the effects of bioaugmentation with a single PGPR and EDTA addition on plant and root growth, plant HM uptake, HM leaching, as well as the changes that occurred in soil microbial communities (structure, biomass, and activity). Good removal percentages on a dry mass basis of Cr (0.4%), Ni (0.6%), and Cu (0.9%) were observed in giant reed while negligible values (&amp;lt;100‰) in hemp. In giant reed, HMs accumulated differentially in plant (rhizomes &amp;gt; &amp;gt; roots &amp;gt; leaves &amp;gt; stems) with largest quantities in rhizomes (Cr 0.6, Ni 3.7, and Cu 2.2 g plant–1). EDTA increased Ni and Cu translocation to aerial parts in both crops, despite that in sediments high HM concentrations in leachates were measured. PGPR did not impact fine root diameter distribution of both crops compared with control while EDTA negatively affected root diameter class length (DCL) distribution. Under HM contamination, giant reed roots become shorter (from 5.2 to 2.3 mm cm–3) while hemp roots become shorter and thickened from 0.13 to 0.26 mm. A consistent indirect effect of HM levels on the soil microbiome (diversity and activity) mediated by plant response (root DCL distribution) was observed. Multivariate analysis of bacterial diversity and activity revealed not only significant effects of plant and soil type (rhizosphere vs. bulk) but also a clear and similar differentiation of communities between control, EDTA, and PGPR treatments. We propose root DCL distribution as a key plant trait to understand detrimental effect of HMs on microbial communities. Positive evidence of the soil-microbe-plant interactions occurring when bioaugmentation with PGPR is associated with deep-rooting perennial crops makes this combination preferable over the one with chelating agents. Such knowledge might help to yield better bioaugmented bioremediation results in contaminated sites.

Muanpetch R, Ketsupar J, Pimpayao S, et al.

In vitro effects of cannabidiol on activated immune-inflammatory pathways in major depressive patients and healthy controls

Pharmaceuticals, 2022, 15(4):405.

DOI:10.3390/ph15040405      URL     [本文引用: 1]

Major depressive disorder and major depressive episodes (MDD/MDE) are characterized by the activation of the immune–inflammatory response system (IRS) and the compensatory immune–regulatory system (CIRS). Cannabidiol (CBD) is a phytocannabinoid isolated from the cannabis plant, which is reported to have antidepressant-like and anti-inflammatory effects. The aim of the present study is to examine the effects of CBD on IRS, CIRS, M1, T helper (Th)-1, Th-2, Th-17, T regulatory (Treg) profiles, and growth factors in depression and healthy controls. Culture supernatant of stimulated (5 μg/mL of PHA and 25 μg/mL of LPS) whole blood of 30 depressed patients and 20 controls was assayed for cytokines using the LUMINEX assay. The effects of three CBD concentrations (0.1 µg/mL, 1 µg/mL, and 10 µg/mL) were examined. Depression was characterized by significantly increased PHA + LPS-stimulated Th-1, Th-2, Th-17, Treg, IRS, CIRS, and neurotoxicity profiles. CBD 0.1 µg/mL did not have any immune effects. CBD 1.0 µg/mL decreased CIRS activities but increased growth factor production, while CBD 10.0 µg/mL suppressed Th-1, Th-17, IRS, CIRS, and a neurotoxicity profile and enhanced T cell growth and growth factor production. CBD 1.0 to 10.0 µg/mL dose-dependently decreased sIL-1RA, IL-8, IL-9, IL-10, IL-13, CCL11, G-CSF, IFN-γ, CCL2, CCL4, and CCL5, and increased IL-1β, IL-4, IL-15, IL-17, GM-CSF, TNF-α, FGF, and VEGF. In summary, in this experiment, there was no beneficial effect of CBD on the activated immune profile of depression and higher CBD concentrations can worsen inflammatory processes.

Tabrez S, Matthew J L, Danielle D, et al.

The potential role of cannabinoids in dermatology

The Journal of Dermatological Treatment, 2019, 31(8):1471-1753.

[本文引用: 1]

Maria V R, Arturo I F, Pietro A.

The (poly) pharmacology of cannabidiol in neurological and neuropsychiatric disorders:molecular mechanisms and targets

International Journal of Molecular Sciences, 2021, 22(9):4876-4876.

DOI:10.3390/ijms22094876      URL     [本文引用: 1]

Cannabidiol (CBD), the major nonpsychoactive Cannabis constituent, has been proposed for the treatment of a wide panel of neurological and neuropsychiatric disorders, including anxiety, schizophrenia, epilepsy and drug addiction due to the ability of its versatile scaffold to interact with diverse molecular targets that are not restricted to the endocannabinoid system. Albeit the molecular mechanisms responsible for the therapeutic effects of CBD have yet to be fully elucidated, many efforts have been devoted in the last decades to shed light on its complex pharmacological profile. In particular, an ever-increasing number of molecular targets linked to those disorders have been identified for this phytocannabinoid, along with the modulatory effects of CBD on their cascade signaling. In this view, here we will try to provide a comprehensive and up-to-date overview of the molecular basis underlying the therapeutic effects of CBD involved in the treatment of neurological and neuropsychiatric disorders.

Lorena R C C, Sandra K R, Nick H, et al.

The anti-inflammatory effects of cannabidiol and cannabigerol alone,and in combination

Pulmonary Pharmacology & Therapeutics, 2021, 69:102047.

[本文引用: 1]

赵明香, 朱永立, 向蓉蓉, .

外源水杨酸对镉锌胁迫下烤烟生长及抗氧化特性的影响

西北农林科技大学学报(自然科学版), 2020, 48(2):34-41.

[本文引用: 1]

李忠光, 龚明. 植物生理学综合性和设计性实验教程. 武汉: 华中科技大学出版社, 2014.

[本文引用: 1]

宋雅娟, 李师翁.

油菜素内酯缓解植物重金属胁迫机制的研究

环境科学与技术, 2021, 44(8):39-46.

[本文引用: 1]

Jan S, Alyemeni M N, Wijaya L, et al. Interactive effect of 24- epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biology, 2018, 18(1):1-18.

[本文引用: 1]

贾茵, 刘才磊, 兰晓悦, .

外源水杨酸对镉胁迫下小报春幼苗生长及生理特性的影响

草地学报, 2020, 28(5):1346-1354.

DOI:10.11733/j.issn.1007-0435.2020.05.020      [本文引用: 1]

为了探究叶面喷施外源水杨酸(Salicylic acid,SA)对小报春(Primula forbesii Franch.)镉(Cadmium,Cd)胁迫的缓解作用,本研究以小报春幼苗为试验材料,采用盆栽试验方法,在土壤Cd胁迫(150 mg&#183;kg<sup>-1</sup>)下,测定不同浓度(0,10,100,1 000 μmol&#183;L<sup>-1</sup>) SA处理下的小报春植株生长和生理特性指标。结果表明,低浓度SA (10,100 μmol&#183;L<sup>-1</sup>)能够使小报春株高、冠幅和地上部生物量增加,促进光合作用;低浓度SA能降低过氧化氢和丙二醛含量,提高超氧化物歧化酶(Superoxide dismutase,SOD)、过氧化物酶(Peroxidase,POD)和过氧化氢酶(Catalase,CAT)活性,促进可溶性糖和可溶性蛋白的产生;同时低浓度SA还能显著降低小报春幼苗叶片中的Cd含量,增加叶片中的钾和锌含量,降低钙和镁含量。而高浓度SA (1 000 μmol&#183;L<sup>-1</sup>)缓解作用下降,甚至对植株生长产生抑制作用。本研究表明,100 μmol&#183;L<sup>-1</sup>外源SA处理可以显著缓解150 mg&#183;kg<sup>-1</sup>土壤Cd胁迫对小报春幼苗的毒害作用,并降低植株镉积累。

张盛楠, 黄益宗, 李颜, .

Cd胁迫下不同外源植物激素对水稻幼苗抗氧化系统及Cd吸收积累的影响

环境科学, 2021, 42(4):2040-2046.

[本文引用: 1]

刘梓清, 杨继刚, 吴子涵, .

植物根系限制重(类)金属吸收/转运的因素及其机制

农业现代化研究, 2021, 42(2):284-293.

[本文引用: 1]

邢淑萍, 陈保冬, 郝志鹏, .

根际微生物增强宿主植物耐铬能力生理机制研究进展

生态毒理学报, 2021, 16(1):2-14.

[本文引用: 1]

蔡仕珍, 龙聪颖, 邓辉茗, .

外源SA、GSH对Cd胁迫下绵毛水苏生理和生长的影响

核农学报, 2021, 35(1):211-220.

DOI:10.11869/j.issn.100-8551.2021.01.0211      [本文引用: 1]

为探究不同外源物质对Cd胁迫下绵毛水苏生理和生长的缓解效果,采用盆栽试验研究叶面喷施不同浓度水杨酸(SA)(0.5、1.0、1.5、2.0 mmol·L<sup>-1</sup>)和谷胱甘肽(GSH)(0.1、0.2、0.3、0.4 mmol·L<sup>-1</sup>) 对300 mg·kg<sup>-1</sup> Cd胁迫下绵毛水苏幼苗生长、渗透调节物质、抗氧化酶活性以及Cd含量等的影响。结果表明,外源SA和GSH改善了植物的叶色,提高了叶面积和萌蘖能力,并增加了地下、地上部干物质积累量。除0.4 mmol·L<sup>-1</sup> GSH处理第3天外,外源SA和GSH处理均提高了可溶性糖、可溶性蛋白和游离脯氨酸等渗透调节物质的含量,最高增幅分别为16.06%、14.13%、311.39%(SA)和50.28%、12.77%、313.77%(GSH);此外,SA和GSH分别使抗氧化酶(SOD、POD和CAT)活性最高增幅依次达57.39%、38.51%、26.81%和85.00%、60.77%、50.21%。绵毛水苏吸收的Cd主要累积在根部,外源SA对Cd吸收无明显影响,而GSH抑制了Cd向地上部的转运。综上可知,SA和GSH对Cd胁迫下的绵毛水苏均具有缓解作用,以1.5 mmol·L<sup>-1</sup> SA和0.3~0.4 mmol·L<sup>-1</sup> GSH效果较佳。本研究结果对绵毛水苏应用于Cd污染土壤植物修复具有重要意义。

王明瑶, 曹亮, 于奇, .

褪黑素浸种对盐碱胁迫下大豆种子萌发的影响

作物杂志, 2019(6):195-202.

[本文引用: 1]

Péter P, Gábor P, Zoltán T, et al.

Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.)

Journal of Plant Research, 2019, 132(2):273-283.

DOI:10.1007/s10265-019-01085-y      PMID:30758749      [本文引用: 1]

The growth regulator, salicylic acid (SA) plays an important role in the induction of cell death in plants. Production of reactive oxygen species (ROS) by mitochondrial electron transport chain (mtETC), cytochrome c (cyt c) release from mitochondria and loss of mitochondrial integrity can be observed during cell death execution in plant tissues. The aim of this work was to study the putative role of hexokinases (HXKs) in the initiation of cell death using tomato (Solanum lycopersicum L.) leaves and mitochondria isolated from plants exposed to a sublethal, 0.1 mM and a cell death-inducing, 1 mM concentrations of SA. Both treatments enhanced ROS and nitric oxide (NO) production in the leaves, which contributed to a concentration-dependent loss of membrane integrity. Images prepared by transmission electron microscopy showed swelling and disorganisation of mitochondrial cristae and vacuolization of mitochondria after SA exposure. Using post-embedding immunohistochemistry, cyt c release from mitochondria was also detected after 1 mM SA treatment. Both SA treatments decreased the activity and transcript levels of HXKs in the leaves and the total mtHXK activity in the mitochondrial fraction. The role of mitochondrial hexokinases (mtHXKs) in ROS and NO production of isolated mitochondria was investigated by the addition of HXK substrate, glucose (Glc) and a specific HXK inhibitor, N-acetylglucosamine (NAG) to the mitochondrial suspension. Both SA treatments enhanced ROS production by mtETC in the presence of succinate and ADP, which was slightly inhibited by Glc and increased significantly by NAG in control and in 0.1 mM SA-treated mitochondria. These changes were not significant at 1 mM SA, which caused disorganisation of mitochondrial membranes. Thus the inhibition of mtHXK activity can contribute to the mitochondrial ROS production, but it is not involved in NO generation in SA-treated leaf mitochondria suggesting that SA can promote cell death by suppressing mtHXK transcription and activity.

Muhammad N, Zvobgo G, Fu L B, et al.

Physiological mechanisms for antagonistic interaction of manganese and aluminum in barley

Journal of Plant Nutrition, 2019, 42(5):466-476.

DOI:10.1080/01904167.2019.1567767      [本文引用: 1]

In a previous study, we found that the combined addition of Al and Mn in the culture solution could alleviate the inhibition of barley growth by addition of Al or Mn alone. The current experiment was conducted in a greenhouse to investigate the physiological mechanisms of the antagonistic interaction using two barley genotypes, XZ16 (both Al and Mn tolerant) and ZU9 (both Al and Mn sensitive). The treatments consisted of three Al levels (0, 0.1, and 0.5 mM) and three Mn levels (0, 0.2, and 1.0 mM) and their combinations, and a completely randomized block design was used with three replications. The combined treatments had larger plant biomass, lower Al and Mn concentrations and accumulation in plant tissues, lower malondialdehyde content, and higher root ATPases activities, compared with Al or Mn alone treatment. The two genotypes had the similar trend in the antagonistic interaction, with ZU9 being more predominant than XZ16.

闵强, 柯汉玲, 祖艳群, .

连续2年土壤砷胁迫对三七(Panax notoginseng)细胞膜透性和抗氧化酶活性的影响

云南农业大学学报(自然科学), 2016, 31(4):767-771.

[本文引用: 1]

王赫, 黄辉.

茶多酚对铬胁迫玉米幼苗的修复作用

天津科技, 2016, 43(2):43-48.

[本文引用: 1]

Mumtaz K, Daud M K, Ali B, et al.

Alleviation of lead-induced physiological,metabolic and ultramorphological changes in leaves of upland cotton through glutathione

Environmental Science and Pollution Research, 2016, 23(9):8431-8440.

DOI:10.1007/s11356-015-5959-4      URL     [本文引用: 1]

Qin S Y, Liu H G, Nie Z J, et al.

AsA-GSH cycle and antioxidant enzymes play important roles in Cd tolerance of wheat

Bulletin of Environmental Contamination and Toxicology, 2018, 101(5):684-690.

DOI:10.1007/s00128-018-2471-9      PMID:30353306      [本文引用: 1]

Wheat (Triticum aestivum L.) has relatively high tolerance to cadmium (Cd), but the underlying mechanisms are poorly understood. Growth and physiological parameters of wheat exposed to different Cd concentrations (0, 0.5, 5 and 50 µM) were characterized. The fresh weight, leaf chlorophyll and carotenoid concentrations and photosynthesis parameters did not differ among Cd treatments, suggesting relatively high Cd tolerance in wheat. However, the soluble sugar concentrations increased with the increasing Cd concentration and the soluble protein concentrations decreased in both shoots and roots, suggesting that the Cd application promoted nitrogen metabolism over carbon metabolism. In addition, the higher concentrations of MDA, GSH and AsA and activities of antioxidant enzymes (SOD, POD, and CAT) were observed in leaves and roots in the Cd50 treatment. Our results reveal that wheat can tolerate Cd by enhancing the antioxidant enzymes activities and increasing the concentration of ascorbate and glutathione.

Yuan H Y, Guo Z, Liu Q Q, et al.

Exogenous glutathione increased lead uptake and accumulation in Iris lactea var. chinensis exposed to excess lead

International Journal of Phytoremediation, 2018, 20(11):1136-1143.

DOI:10.1080/15226514.2018.1460307      URL     [本文引用: 1]

Mohamed A F, Mohammad R G, Peter C R.

Cannabidiol protects against high glucose-induced oxidative stress and cytotoxicity in cardiac voltage-gated sodium channel

British Journal of Pharmacology, 2020, 177(13):2932-2946.

DOI:10.1111/bph.15020      PMID:32077098      [本文引用: 1]

Cardiovascular complications are the major cause of mortality in diabetic patients. However, the molecular mechanisms underlying diabetes-associated arrhythmias are unclear. We hypothesized that high glucose could adversely affect Na 1.5, the major cardiac sodium channel isoform of the heart, at least partially via oxidative stress. We further hypothesized that cannabidiol (CBD), one of the main constituents of Cannabis sativa, through its effects on Na 1.5, could protect against high glucose-elicited oxidative stress and cytotoxicity.To test these ideas, we used CHO cells transiently co-transfected with cDNA encoding human Na 1.5 α-subunit under control and high glucose conditions (50 or 100 mM for 24 hr). Several experimental and computational techniques were used, including voltage clamp of heterologous expression systems, cell viability assays, fluorescence assays and action potential modelling.High glucose evoked cell death associated with elevation in reactive oxygen species (ROS) right shifted the voltage dependence of conductance and steady-state fast inactivation, and increased persistent current leading to computational prolongation of action potential (hyperexcitability) which could result in long QT3 arrhythmia. CBD mitigated all the deleterious effects provoked by high glucose. Perfusion with lidocaine (a well-known sodium channel inhibitor with antioxidant effects) or co-incubation of Tempol (a well-known antioxidant) elicited protection, comparable to CBD, against the deleterious effects of high glucose.These findings suggest that, through its favourable antioxidant and sodium channel inhibitory effects, CBD may protect against high glucose-induced arrhythmia and cytotoxicity.© 2020 The British Pharmacological Society.

徐兴阳, 罗华元, 闫辉, .

不同烟草品种对6种重金属抗性能力初评

云南省烟草学会2014年学术年会优秀论文集, 昆明: 云南省烟草学会, 2015:312-323.

[本文引用: 1]

/