作物杂志,2023, 第2期: 163–170 doi: 10.16035/j.issn.1001-7283.2023.02.024

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

大麻二酚对Cd和Cr胁迫下烟草生长的影响

管娇(), 樊兴荣, 邹红旭, 杨嘉玲, 王丽华, 翁玉仙, 保志娟()   

  1. 云南农业大学烟草学院,650201,云南昆明
  • 收稿日期:2022-02-17 修回日期:2022-07-28 出版日期:2023-04-15 发布日期:2023-04-11
  • 通讯作者: 保志娟,主要从事烟草分析及烟草有害成分研究,E-mail:baozhijuan@aliyun.com
  • 作者简介:管娇,主要从事烟草重金属污染与防治,E-mail:2374641485@qq.com
  • 基金资助:
    国家自然科学基金(32160418);云南省科技计划农业联合面上项目(2017FG001-063);云南省教育厅科学研究基金研究生项目(2020Y161)

Effects of Cannabidiol on Tobacco Growth under Cd and Cr Stress

Guan Jiao(), Fan Xingrong, Zou Hongxu, Yang Jialing, Wang Lihua, Weng Yuxian, Bao Zhijuan()   

  1. College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2022-02-17 Revised:2022-07-28 Online:2023-04-15 Published:2023-04-11

摘要:

为探讨大麻二酚(CBD)对重金属胁迫下烟草生长的影响,以烟草品种K326为材料,分别将浓度为0.0、1.0、5.0、25.0mg/L的CBD喷施于Cd和Cr胁迫烟株叶面,测定其叶片的抗氧化指标、生物量及Cd、Cr积累量。结果表明,Cd和Cr胁迫严重抑制烟株生长,显著提高烟叶活性氧和重金属含量。外源CBD对烟株生长存在低促高抑作用。当CBD浓度分别为1.0mg/L(Cd)和5.0mg/L(Cr)时效果最佳,显著降低了烟叶超氧阴离子(O2-·)产生速率,丙二醛、H2O2和烟株Cd、Cr含量;显著提高烟株干重、叶片超氧化物歧化酶、过氧化物酶、多酚氧化酶、抗坏血酸过氧化物酶和谷胱甘肽还原酶活性,增加抗坏血酸(AsA)、谷胱甘肽(GSH)含量以及AsA/DHA(氧化型抗坏血酸)、GSH/GSSG(氧化型谷胱甘肽)。综上,适量CBD能有效缓解Cd和Cr胁迫对烟叶的氧化损伤,抑制烟株内重金属的积累,促进植株生长。

关键词: 大麻二酚, 重金属胁迫, 烟草, 抗氧化, AsA-GSH循环

Abstract:

This work was conducted to explore the effects of cannabidiol (CBD) on the growth and development of tobacco under heavy metal stress. Using tobacco variety K326 as material, the CBD solutions of four different concentrations (0.0, 1.0, 5.0, 25.0mg/L) were sprayed on the leaf surface in Cd-stressed and Cr-stressed tobacco plants, respectively. The biomass, Cd and Cr accumulation of tobacco plants, and antioxidant indexes in leaves were determined after treatments. The results showed that, Cd and Cr stress seriously inhibited the growth of tobacco and increased the accumulation of Cd and Cr in plants. Exogenous CBD appeared low concentrations promotion and high concentration inhibition on tobacco growth. The application of 1.0mg/L (Cd) and 5.0mg/L (Cr) CBD significantly reduced the production rate of O2-· and H2O2 in tobacco leaves, Cd and Cr contents in plants, while remarkably increased the shoot and root dry weight of tobacco, the activities of superoxide dismutase, peroxidase, polyphenol oxidase, ascorbic acid peroxidase and glutathione reductase, and improved the contents of ascorbic acid (AsA) and glutathione (GSH), as well as AsA/DHA (dehydroascorbate) and GSH/ GSSG (oxidized glutathione). In conclusion, an appropriate amount of exogenous CBD could effectively alleviate the oxidative damage caused by heavy metal stress, inhibit the accumulation of heavy metals in tobacco plants and promote plants growth.

Key words: Cannabidiol, Heavy metal stress, Nicotiana tabacum L., Antioxidation, AsA-GSH cycle

表1

CBD对Cd和Cr胁迫下烟株生物量的影响

重金属
Heavy metal
(mg/kg)
CBD浓度
CBD concentration
(mg/L)
干重(g/株)Dry weight (g/plant) 耐受系数Tolerance coefficient
地上部分
Upper ground
地下部分
Under ground
地上部分
Upper ground
地下部分
Under ground
CK 51.47±0.82a 7.62±0.38a ? ?
Cd (60) 0.0 41.00±1.17c 5.47±0.44c 0.80±0.03b 0.72±0.09b
1.0 46.71±1.02b 7.20±0.46a 0.91±0.02a 0.94±0.06a
5.0 42.81±1.18c 7.04±0.62ab 0.83±0.01b 0.92±0.08a
25.0 41.91±1.05c 6.18±1.05bc 0.81±0.03b 0.81±0.10ab
Cr (90) 0.0 37.68±0.68d 5.84±0.24b 0.73±0.00c 0.77±0.01b
1.0 39.47±0.78c 6.32±0.28b 0.77±0.01b 0.83±0.04b
5.0 45.96±0.48b 7.36±0.28a 0.89±0.02a 0.97±0.06a
25.0 38.11±0.69d 6.47±0.45b 0.74±0.00c 0.85±0.06b

表2

CBD对Cd和Cr胁迫下烟株吸收Cd、Cr情况的影响

重金属
Heavy
mental
(mg/kg)
CBD浓度
CBD
concentration
(mg/L)
Cd或Cr含量
Content of Cd or Cr (mg/kg DW)
富集系数
Bioaccumulation factor
Cd/Cr
TF
Cd或Cr单株积累量
Cd or Cr accumulation
per plant (mg)
地上部分
Upper ground
地下部分
Under ground
地上部分
Upper ground
地下部分
Under ground
CK 0.86±0.03c 1.68±0.06d ? ? 0.51±0.01c 0.15±0.08d
Cd (60) 0.0 45.41±1.39a 18.18±0.30a 0.750±0.02a 0.300±0.00a 2.50±0.11b 2.96±0.14a
1.0 38.24±0.79b 12.76±0.33c 0.630±0.01b 0.210±0.01c 3.00±0.14a 2.75±0.05b
5.0 37.92±1.22b 13.10±0.10c 0.630±0.02b 0.220±0.00c 2.89±0.07a 2.54±0.03c
25.0 38.30±2.06b 15.93±0.21b 0.640±0.03b 0.260±0.00b 2.41±0.13b 2.61±0.05c
CK 1.40±0.06d 16.49±0.31e ? ? 0.08±0.00b 1.06±0.00d
Cr (90) 0.0 2.30±0.10a 42.71±1.33a 0.013±0.00a 0.250±0.01a 0.05±0.00d 1.96±0.06a
1.0 1.79±0.05c 26.76±0.41c 0.010±0.00c 0.150±0.00c 0.07±0.00c 1.31±0.04c
5.0 2.08±0.11b 22.33±0.76d 0.012±0.00b 0.130±0.00d 0.09±0.01a 1.30±0.04c
25.0 2.15±0.09ab 32.94±0.38b 0.012±0.00b 0.190±0.00b 0.07±0.00c 1.56±0.03b

图1

CBD对Cd和Cr胁迫下烟叶中O2-·产生速率以及H2O2和MDA含量的影响 不同小写字母表示处理间差异显著(P < 0.05),下同

图2

CBD对Cd和Cr胁迫下烟叶中抗氧化酶活性的影响

图3

CBD对Cd和Cr胁迫下烟叶AsA、AsA/DHA、GSH和GSH/GSSG的影响

图4

CBD对Cd和Cr胁迫下烟叶APX和GR活性的影响

表3

CBD浓度与烟叶氧化系统各指标和单株Cd、Cr积累量的相关系数

重金属
Heavy metal
SOD POD PPO AsA GSH H2O2 O2-· MDA Cd或Cr积累量
Cd or Cr accumulation amount
Cd -0.267 -0.602* -0.619* -0.304 -0.410 0.699* 0.831** 0.283 -0.500
Cr -0.221 -0.430 -0.379 -0.164 0.335 -0.876** -0.199 0.795 ** -0.055

图5

Cd (a)、Cr (b)胁迫下烟叶抗氧化指标与膜脂过氧化指标、单株Cd和Cr积累量的相关性分析 “**”表示极显著相关(P < 0.01);“*”表示显著相关(P < 0.05)

[1] Arora N K, Chauhan R. Heavy metal toxicity and sustainable interventions for their decontamination. Environmental Sustainability, 2021, 4(1):1-3.
doi: 10.1007/s42398-021-00164-y
[2] 张星雨, 叶志彪, 张余洋. 植物响应镉胁迫的生理与分子机制研究进展. 植物生理学报, 2021, 57(7):1437-1450.
[3] Muhammad A F, Faisal I, Yang C, et al. Methyl jasmonate alleviates arsenicinduced oxidative damage and modulates the ascorbate-glutathione cycle in oilseed rape roots. Plant Growth Regulation, 2018, 84(1):135-148.
doi: 10.1007/s10725-017-0327-7
[4] 杜昕, 李博, 毛鲁枭, 等. 褪黑素对干旱胁迫下大豆产量及AsA- GSH循环的影响. 作物杂志, 2022(1):174-178.
[5] 史广宇, 余志强, 施维林, 等. 植物修复土壤重金属污染中外源物质的影响机制和应用研究进展. 生态环境学报, 2021, 30 (3):655-666.
doi: 10.16258/j.cnki.1674-5906.2021.03.024
[6] 翁蔚, 张琴梅, 李书魁, 等. 植物多酚抗病毒功效及机制研究进展. 中华中医药杂志, 2020, 35(12):6236-6240.
[7] 司廉邦, 李嘉敏, 黎桂英, 等. 茶多酚对盐胁迫下小麦幼苗叶片生理特性的影响. 生态学报, 2020, 40(11):3747-3755.
[8] 耿志刚, 韩西红, 赵丽丽, 等. 褐藻多酚对铅胁迫下上海青生长及抗氧化系统的影响. 热带农业工程, 2020, 44(6):82-87.
[9] 宋佳倩, 徐亮, 王悦霖, 等. 外源添加麝香草酚提高烟草幼苗抵御盐胁迫机理的研究. 中国烟草学报, 2021, 27(2):65-71.
[10] Andrea F, Alessandra F, Giulia S, et al. Bioaugmented phytoremediation of metal-contaminated soils and sediments by hemp and giant Reed. Frontiers in Microbiology, 2021, 12:645893.
doi: 10.3389/fmicb.2021.645893
[11] Muanpetch R, Ketsupar J, Pimpayao S, et al. In vitro effects of cannabidiol on activated immune-inflammatory pathways in major depressive patients and healthy controls. Pharmaceuticals, 2022, 15(4):405.
doi: 10.3390/ph15040405
[12] Tabrez S, Matthew J L, Danielle D, et al. The potential role of cannabinoids in dermatology. The Journal of Dermatological Treatment, 2019, 31(8):1471-1753.
[13] Maria V R, Arturo I F, Pietro A. The (poly) pharmacology of cannabidiol in neurological and neuropsychiatric disorders:molecular mechanisms and targets. International Journal of Molecular Sciences, 2021, 22(9):4876-4876.
doi: 10.3390/ijms22094876
[14] Lorena R C C, Sandra K R, Nick H, et al. The anti-inflammatory effects of cannabidiol and cannabigerol alone,and in combination. Pulmonary Pharmacology & Therapeutics, 2021, 69:102047.
[15] 赵明香, 朱永立, 向蓉蓉, 等. 外源水杨酸对镉锌胁迫下烤烟生长及抗氧化特性的影响. 西北农林科技大学学报(自然科学版), 2020, 48(2):34-41.
[16] 李忠光, 龚明. 植物生理学综合性和设计性实验教程. 武汉: 华中科技大学出版社, 2014.
[17] 宋雅娟, 李师翁. 油菜素内酯缓解植物重金属胁迫机制的研究. 环境科学与技术, 2021, 44(8):39-46.
[18] Jan S, Alyemeni M N, Wijaya L, et al. Interactive effect of 24- epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biology, 2018, 18(1):1-18.
[19] 贾茵, 刘才磊, 兰晓悦, 等. 外源水杨酸对镉胁迫下小报春幼苗生长及生理特性的影响. 草地学报, 2020, 28(5):1346-1354.
doi: 10.11733/j.issn.1007-0435.2020.05.020
[20] 张盛楠, 黄益宗, 李颜, 等. Cd胁迫下不同外源植物激素对水稻幼苗抗氧化系统及Cd吸收积累的影响. 环境科学, 2021, 42(4):2040-2046.
[21] 刘梓清, 杨继刚, 吴子涵, 等. 植物根系限制重(类)金属吸收/转运的因素及其机制. 农业现代化研究, 2021, 42(2):284-293.
[22] 邢淑萍, 陈保冬, 郝志鹏, 等. 根际微生物增强宿主植物耐铬能力生理机制研究进展. 生态毒理学报, 2021, 16(1):2-14.
[23] 蔡仕珍, 龙聪颖, 邓辉茗, 等. 外源SA、GSH对Cd胁迫下绵毛水苏生理和生长的影响. 核农学报, 2021, 35(1):211-220.
doi: 10.11869/j.issn.100-8551.2021.01.0211
[24] 王明瑶, 曹亮, 于奇, 等. 褪黑素浸种对盐碱胁迫下大豆种子萌发的影响. 作物杂志, 2019(6):195-202.
[25] Péter P, Gábor P, Zoltán T, et al. Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.). Journal of Plant Research, 2019, 132(2):273-283.
doi: 10.1007/s10265-019-01085-y pmid: 30758749
[26] Muhammad N, Zvobgo G, Fu L B, et al. Physiological mechanisms for antagonistic interaction of manganese and aluminum in barley. Journal of Plant Nutrition, 2019, 42(5):466-476.
doi: 10.1080/01904167.2019.1567767
[27] 闵强, 柯汉玲, 祖艳群, 等. 连续2年土壤砷胁迫对三七(Panax notoginseng)细胞膜透性和抗氧化酶活性的影响. 云南农业大学学报(自然科学), 2016, 31(4):767-771.
[28] 王赫, 黄辉. 茶多酚对铬胁迫玉米幼苗的修复作用. 天津科技, 2016, 43(2):43-48.
[29] Mumtaz K, Daud M K, Ali B, et al. Alleviation of lead-induced physiological,metabolic and ultramorphological changes in leaves of upland cotton through glutathione. Environmental Science and Pollution Research, 2016, 23(9):8431-8440.
doi: 10.1007/s11356-015-5959-4
[30] Qin S Y, Liu H G, Nie Z J, et al. AsA-GSH cycle and antioxidant enzymes play important roles in Cd tolerance of wheat. Bulletin of Environmental Contamination and Toxicology, 2018, 101(5):684-690.
doi: 10.1007/s00128-018-2471-9 pmid: 30353306
[31] Yuan H Y, Guo Z, Liu Q Q, et al. Exogenous glutathione increased lead uptake and accumulation in Iris lactea var. chinensis exposed to excess lead. International Journal of Phytoremediation, 2018, 20(11):1136-1143.
doi: 10.1080/15226514.2018.1460307
[32] Mohamed A F, Mohammad R G, Peter C R. Cannabidiol protects against high glucose-induced oxidative stress and cytotoxicity in cardiac voltage-gated sodium channel. British Journal of Pharmacology, 2020, 177(13):2932-2946.
doi: 10.1111/bph.15020 pmid: 32077098
[33] 徐兴阳, 罗华元, 闫辉, 等. 不同烟草品种对6种重金属抗性能力初评. 云南省烟草学会2014年学术年会优秀论文集, 昆明: 云南省烟草学会, 2015:312-323.
[1] 单嘉烨, 张学伟, 鄢敏, 杨建, 王飞, 何佶弦, 胡刚, 王宇辰, 景延秋, 雷强. 喷施稀土微肥对干旱胁迫下烤烟生长及生理特性的影响[J]. 作物杂志, 2023, (2): 100–105
[2] 王媛, 王继明, 年夫照, 郑元仙, 许银莲, 李翠芬, 崔涌泉, 张奇福, 赵磊峰, 廖小琳, 何元胜. 连季增施稻壳生物炭对植烟土壤理化性质及烤烟生长的影响[J]. 作物杂志, 2023, (1): 219–225
[3] 王瀚祥, 李广存, 徐建飞, 王万兴, 金黎平. 植物耐盐机理研究进展[J]. 作物杂志, 2022, (5): 1–12
[4] 王燕, 李廷友, 王豆, 李佳薇, 彭雯璐, 芮海云. 异甜菊醇对盐胁迫下小麦幼苗生长的影响[J]. 作物杂志, 2022, (5): 141–145
[5] 魏晓凯, 景延秋, 何佶弦, 顾会战, 雷强, 俞世康, 张启莉, 李俊举. 外源亚精胺对烤烟幼苗干旱胁迫的缓解效应研究[J]. 作物杂志, 2022, (3): 143–148
[6] 谭秦亮, 程琴, 潘成列, 朱鹏锦, 李佳慧, 宋奇琦, 农泽梅, 周全光, 庞新华, 吕平. 干旱胁迫对甘蔗新品种桂热2号生理指标的影响[J]. 作物杂志, 2022, (3): 161–167
[7] 王继玥, 刘政宏, 姜连, 白禹, 张婷, 刘燕, 石登红. 5个秋葵品种果实性状、质地、营养品质及抗氧化性比较[J]. 作物杂志, 2022, (3): 200–204
[8] 姚怡帆, 代卓毅, 江智敏, 徐敏, 李芳芳, 张希, 党伟, 武兆云, 丁永乐, 杨铁钊. RNA干扰对烟草NtPPO8基因沉默的效应分析[J]. 作物杂志, 2022, (3): 80–86
[9] 曹丽茹, 鲁晓民, 王国瑞, 党尊, 邱天, 邱建军, 田云峰, 王振华, 党永富. 叶面喷施炭吸附聚谷氨酸对玉米生长发育的影响[J]. 作物杂志, 2022, (2): 158–166
[10] 孟凡, 罗建新, 蔡叶, 余颖, 杨磊, 周万春. 土壤速效磷对烟草生长发育及干物质积累与分配的影响[J]. 作物杂志, 2022, (2): 203–210
[11] 卢军, 钱宇, 杨柳, 王勇, 陈玉蓝. 贮藏时间对烟草品种红花大金元种子萌发和生理特性的影响[J]. 作物杂志, 2022, (2): 211–214
[12] 张豫丹, 马晓寒, 李俊领, 许自成, 贾玮, 石秋环. 绿原酸对烟草疫霉的抑制作用及对烟草黑胫病的防治效果研究[J]. 作物杂志, 2022, (2): 230–236
[13] 蔡琪琪, 王堽, 董寅壮, 於丽华, 王宇光, 耿贵. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响[J]. 作物杂志, 2022, (1): 130–136
[14] 杜昕, 李博, 毛鲁枭, 陈伟, 张玉先, 曹亮. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响[J]. 作物杂志, 2022, (1): 174–178
[15] 周晶, 孙侃, 周忠义, 王传旗, 苗彦军. 西藏3份垂穗披碱草耐旱性评价[J]. 作物杂志, 2021, (5): 205–210
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!