作物杂志, 2025, 41(4): 1-8 doi: 10.16035/j.issn.1001-7283.2025.04.001

专题综述

LEA蛋白在逆境胁迫下的研究进展

黄若兰,1,2, 李帅2, 蔡兆琴1, 陈会鲜1, 肖冬,2

1广西南亚热带农业科学研究所,532415,广西崇左

2广西农业环境与农产品安全重点实验室/广西大学农学院,530004,广西南宁

Research Progress of LEA Proteins under Stress Conditions

Huang Ruolan,1,2, Li Shuai2, Cai Zhaoqin1, Chen Huixian1, Xiao Dong,2

1Guangxi South Subtropical Agricultural Sciences Research Institute, Chongzuo 532415, Guangxi, China

2Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety / College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China

通讯作者: 肖冬,研究方向为花生逆境生理和甘薯块根发育生理,E-mail:xiaodong@gxu.edu.cn

收稿日期: 2024-03-4   修回日期: 2024-05-22   网络出版日期: 2024-12-05

基金资助: 国家自然科学基金(31701356)
广西大学大学生创新创业训练项目(201910593083)
广西农业科学院基本科研业务专项(桂农科2023YM25)
广西青年科学基金项目(2023GXNSFBA026150)

Received: 2024-03-4   Revised: 2024-05-22   Online: 2024-12-05

作者简介 About authors

黄若兰,研究方向为经济作物逆境生理,E-mail:hrlan629@163.com

摘要

植物在生长发育过程中不可避免地面临逆境胁迫,在应对胁迫的过程中,进化出一类响应逆境胁迫的功能性蛋白,如胚胎晚期发育丰富蛋白(late embryogenesis abundant,LEA)。LEA蛋白是一种高度亲水的富含甘氨酸的蛋白,广泛存在于植物中,其内在的无序性和高亲水性促进了LEA蛋白保护功能机制的多样性。LEA蛋白在响应逆境胁迫、激素信号和参与免疫应答等方面发挥重要作用。本文主要综述了LEA蛋白的结构分类、功能分析及逆境胁迫下LEA蛋白的功能研究,为深入了解LEA蛋白的抗逆机制以及通过基因工程提高生物的耐逆性提供参考。

关键词: LEA蛋白; 逆境胁迫; AhLEA1

Abstract

Plants inevitably face stress during growth and development. In response to stress, a class of functional proteins has evolved, such as late embryogenesis abundant proteins (LEA). LEA proteins are highly hydrophilic glycine-rich proteins that are widely found in plants. Their intrinsic disorder and high hydrophilicity facilitate a variety of mechanisms for the protective functions of LEA proteins. LEA proteins have been found to play important roles in stress responses, hormone signaling and participation in immune responses. This paper primarily reviews the structural classification, functional analyses, as well as the functional research of LEA proteins under stress conditions. This provides insights into the resistance mechanisms of LEA proteins and serves as a reference for enhancing organism resistance through genetic engineering.

Keywords: LEA protein; Stress condition; AhLEA1

PDF (489KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄若兰, 李帅, 蔡兆琴, 陈会鲜, 肖冬. LEA蛋白在逆境胁迫下的研究进展. 作物杂志, 2025, 41(4): 1-8 doi:10.16035/j.issn.1001-7283.2025.04.001

Huang Ruolan, Li Shuai, Cai Zhaoqin, Chen Huixian, Xiao Dong. Research Progress of LEA Proteins under Stress Conditions. Crops, 2025, 41(4): 1-8 doi:10.16035/j.issn.1001-7283.2025.04.001

植物在生长发育的过程中会受到各种胁迫,如生理、生态和生物胁迫等。在进化过程中植物对各种胁迫形成一些特定的、复杂的防御机制,其中一类是参与抵御逆境胁迫的功能性蛋白,如NO3转运蛋白、F-box蛋白、热激蛋白和胚胎晚期发育丰富蛋白(late embryogenesis abundant,LEA)等。LEA蛋白是一种保护细胞免受脱水伤害的功能性蛋白,具有高度亲水性和热稳定性,该蛋白首次在棉花种子成熟后期被发现[1]。研究[2]证实,LEA蛋白在植物中普遍存在,同时也存在于其他生物体中,如动物、细菌、真菌和藻类等。研究[2-5]表明,LEA蛋白会受到发育阶段、脱落酸(ABA)和脱水信号(干旱、极端天气、盐胁迫)的调节,且参与生物胁迫信号途径。因此,LEA蛋白在植物发育调节、抗逆生理以及基因工程抗性育种等方面受到广泛关注。

1 LEA蛋白的结构与分类

LEA蛋白是在维管束和非维管束植物中发现的一组蛋白,具有高亲水性、热稳定性、高含量的甘氨酸和其他小氨基酸[丙氨酸(Ala)、丝氨酸(Ser)和苏氨酸(Thr)]以及缺乏或低含量的色氨酸(Trp)和半胱氨酸(Cys)残基的理化性质,大部分LEA蛋白分子量介于10~30 kDa,因其具有极高的亲水性,也被称为亲水素(hydrophilin)。其氨基酸组成与固有无序蛋白(intrinsically disordered proteins,IDP)相似,因此将LEA蛋白归类为IDP[3]。IDP在正常条件下没有固定的三维结构,但其较强的可塑性和复杂的结合性使它们能够参与多种生命过程(包括信号传导、调节发育以及响应各种环境等),如受到干旱等胁迫时折叠并结合水分,以保护细胞中代谢酶,从而帮助植物抵抗逆境[4]。同样,LEA蛋白在保护生物免受脱水胁迫方面发挥着多种作用,如分子伴侣和分子屏蔽、离子螯合剂和抗氧化剂等。LEA蛋白的多功能性部分归因于其结构的可塑性,在完全水合时展开,而在缺水时折叠。

自1981年在棉花中发现LEA蛋白至今,越来越多的LEA基因被挖掘[1],除了植物外,LEA蛋白在细菌、真菌和动物等各类生命体中广泛存在,逐渐构成了一个庞大的蛋白家族[5]。不同的LEA基因家族成员之间的转录产物、氨基酸序列和保守域、蛋白三维结构或化学特征不同[6]。为了更好地了解与跟踪蛋白质,Hunault等[5]建立了LEA蛋白数据库(late embryogenesis abundant proteins database,LEAPdb),根据LEA蛋白保守结构域PFAM可将植物LEA蛋白分成8个亚家族,分别是LEA_1(PF03760)、LEA_2(PF03168)、LEA_3(PF03242)、LEA_4(PF02987)、LEA_5(PF00477)、LEA_6/PvLEA18(PF10714)、Dehydrin(PF00257)和SMP(seed maturation protein)(PF04927)(表1),而Hundertmark等[7]将51个拟南芥LEA基因家族成员分为9个亚家族,将另外2个没有PFAM分类的蛋白归为AtM亚族,马铃薯中鉴定到的29个LEA基因家族成员被分为8个亚家族[8],61个丹参SmLEAs基因被分为7个亚家族[9],126个花生AhLEAs基因被分为8个亚家族[10]

表1   LEA蛋白分类及结构特点

Table 1  Classes and structural feature of LEA proteins

LEA蛋白分类
Classification of LEA proteins
结构特点
Structural feature
参考文献
Reference
LEA_1
C段序列保守性较差,N段有1个由74~78个氨基酸组成的保守序列。遭受胁迫时,保守序列由无序形成α-螺旋结构。[11]
LEA_2无明显保守片段,比其他LEA蛋白同源性低,含有高比例的疏水氨基酸,疏水性强。[12]
LEA_3含有大量的疏水氨基酸,热稳定性较差,沸水条件下不能维持水溶状态。[13]
LEA_4

包括11个氨基酸的重复基序,其保守序列为TAQAAKEKAXE,推测含有2个亲水性α-螺旋。可以形成二聚体。其C端富含甘氨酸和组氨酸残基,能够结合金属离子,N端区域具有类似伴侣的活性。[14]

LEA_5
保守结构域较少,缺少高特异性和显著的基团,疏水残基的含量高,被认为是一种非典型LEA蛋白。[15]
LEA_6/PvLEA18
分子量小,只有7~14 kDa,不含半胱氨酸和色氨酸,具有较高的亲水性与热稳定性,暴露于高温时不会凝结。[16]
Dehydrin



氨基酸组成为82~575个不等,不同成员间相对分子量在9~200 kDa,含有3个高度保守域:K、Y、S,K片段([E/K/R]KKG[I/L]MDKIKEKLPG)(位于C末端)富含赖氨酸,Y片段([V/T]D[E/Q]YGNP)(位于N末端)富含酪氨酸,S片段(SSSSSSSD)富含丝氨酸,可被蛋白激酶磷酸化。部分Dehydrin存在一段富含甘氨酸和极性氨基酸的φ片段,保守性较差。[17]



SMP分子量为5.3~37.4 kDa,与其他LEA亚族同源性较低,保守性强,亲水性和热稳定性高。[7]

新窗口打开| 下载CSV


2 LEA蛋白的功能分析

植物在进化过程中对各种胁迫形成一些特定的、复杂的防御机制。LEA蛋白作为一种抵御逆境胁迫的功能性蛋白,广泛参与应答生物和非生物逆境胁迫的生理过程,在提高植物抗逆性方面发挥重要的功能。研究[18]表明,LEA蛋白的生物功能主要包括水合、螯合金属离子以减少自由基的产生与伤害、特异性分子伴侣和分子屏蔽作用以及稳定细胞膜与蛋白质的结构与功能。

金属离子的积累会对新陈代谢、基因表达和蛋白质结构造成破坏。研究[14]发现,大部分LEA4B亚族的C末端区域富含组氨酸(His)残基(85%),N末端区域含有少量的His残基(15%),而富含His残基的C末端区域能够结合更多的金属离子。此外,在脱水条件下AtLEA4-5蛋白能同时发挥保护酶活性和清除金属离子的作用,其N端可能通过结合和采用二级结构特征来保护酶的活性,而C端则参与金属螯合作用,减少活性氧(ROS)的产生[19]。李承娜等[20]从大豆中分离出GmPM1(LEA4B),利用铜离子(Cu2+)抗坏血酸钠体系检测羟基自由基活性,利用荧光检测剂香豆素-3-羧酸来检测羟基自由基量的变化,发现加入GmPM1蛋白达到荧光值50%的浓度(0.66 μmol/L)显著低于BSA蛋白(1.34 μmol/L),说明GmPM1蛋白具有清除ROS的能力,而主要发挥功能的是富含His残基的GmPM1蛋白的C端,并且与Cu2+结合后的大豆GmPM1蛋白的C端二级结构发生改变。有证据[21-22]表明,LEA蛋白在植物体内发挥抗氧化功能可能有2种机制:第1种是LEA蛋白直接参与ROS的清除;第2种是LEA蛋白通过保护抗氧化酶的活性来发挥抗氧化作用。Hara等[21]发现柑橘中脱水素CuCOR19可以直接清除∙OH和H2O2,并发现在清除自由基过程中,脱水素中甘氨酸(Gly)、赖氨酸(Lys)、His被氧化修饰,从而对植物起到保护作用。刘星辰等[22]将紫花苜蓿MsLEA2基因转入拟南芥中发现,铝胁迫下转基因植株的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性比野生型分别增加1.73、1.51、1.54倍,说明LEA蛋白通过保护抗氧化酶系统,有效消除了铝胁迫诱导产生的H2O2和O2-. ,从而降低了植物氧化胁迫伤害。

LEA蛋白内在的无序性和高亲水性促使了该蛋白保护功能机制的多样性[4]。基于其具有无序多肽链和高水结合能力,前人[18]提出LEA蛋白保护细胞蛋白质或酶免受干旱、冷冻或高温引起失活和聚集的模式有无序伴侣模式和分子屏蔽模式。与传统分子伴侣模式不同,一些LEA蛋白内在无序伴侣活性具有相当广泛的底物特异性,后者通过防止底物分子(尤其是未折叠蛋白质)之间发生碰撞而进行聚集,从而获得立体的稳定性。LEA蛋白较高的水结合能力,可能会通过与底物亲水分子和疏水分子产生水相互作用来破坏大型聚集体的稳定性[18]。在海藻糖的作用下,LEA蛋白对乳酸脱氢酶(LDH)与柠檬酸合酶具有保护与协同作用,表现在防止蛋白质的聚集。线虫中导入AavLEA1蛋白后,干旱胁迫导致的蛋白质聚集增加现象明显减少[23]。对K段(TypK,EKKGIMEKIKEKLPG)序列进行的突变研究[24]表明,疏水氨基酸明显参与了阻止LDH蛋白的低温失活、低温聚集和低温变性。

对LEA蛋白的分析发现该蛋白普遍存在于细胞的不同部位,其中主要存在于细胞质中,说明细胞质LEA蛋白可能不仅参与细胞质本身的应激保护,也参与细胞器膜水平的应激保护[25]。前人[26]研究表明,豌豆线粒体蛋白LEAM在脱水过程中折叠成一种奇特的两性螺旋形式,即A类α-螺旋,使该蛋白能够横向插入内膜的内层,在干燥状态下加固膜。同时具有类似A类α-螺旋的质体蛋白(LEA23和LEA24)在体外也具有保护膜的作用。LEA蛋白的K段与磷脂囊泡的磷酸化结合被证明可降低膜脂相转变。例如,脱水蛋白Lti30(low temperature-induced 30)通过降低膜脂相转变的温度来发挥耐寒功能,Lti30与膜的相互作用受pH和无序脱水蛋白磷酸化的调节[18]

3 LEA蛋白的研究进展

自1981年首次在棉花种子中发现LEA蛋白以来,已在拟南芥、玉米、水稻、小麦、花生和油菜等上百种高等植物中检测到LEA蛋白。最初对LEA蛋白功能的挖掘主要在胚胎发育和脱水干燥方面,随着研究的不断深入,人们发现LEA蛋白在极端天气、盐碱、重金属污染和病虫害等逆境条件下会进行一系列的生化反应来减少损伤和保护细胞,LEA蛋白在植物抗逆遗传改良中具有巨大潜力。如表2所示,我们收集了近几年国内外关于逆境胁迫下LEA蛋白的功能研究。

表2   不同胁迫下LEA蛋白的功能

Table 2  Functions of LEA proteins under different stresses

胁迫
Stress
物种
Species
基因/蛋白
Gene/protein
功能
Function
参考文献
Reference
干旱
Drought

腊梅CpLEA抗旱性与基因CpLEAs的过表达量呈正相关。[27]
玉米

ZmLEA34、ZmNHL1

胁迫条件下,基因ZmLEA34的表达量增加;ZmNHL1通过提高ROS清除能力和维持细胞膜通透性,促进了35S::ZmNHL1转基因植株对干旱胁迫的耐受性。[28-29]

油菜
BnaCPK5
BnaCPK5在一定程度上通过磷酸化2个核心ABA信号元件来调节RD29B的表达,从而充当耐旱性的正向调节因子。[30]
棉花


Gh_A08G0694


在四倍体棉花中敲除Gh_A08G0694后,棉花植株对盐碱和干旱胁迫的敏感性显著增加,该基因被发现与关键的非生物胁迫耐受基因、电压依赖性阴离子通道1(VDAC1)和甘油醛-3-磷酸脱氢酶A(gapA)有很强的相互作用。[31]


哺乳动物/黑腹果蝇
AfrLEA
哺乳动物细胞系和昆虫细胞系在短期暴露于干燥和高渗压力后的存活率明显高于未表达AfrLEA蛋白的细胞系。[32]
链格绿藻LEALEA在藻类植物陆生化过程中的干燥耐受性发挥重要作用。[33]
低温
Low
temperature
PtrLEA1PtrLEA23PtrLEA1PtrLEA23受低温胁迫后高表达。[34]
大白菜BrLEAsBrLEAs受低温胁迫后高表达。[35]
茶树CsLEA1CsLEA1提高了大肠杆菌和酵母对冷胁迫的耐受性。[36]
梨树
PcLEA14
PcLEA14低温耐受机制与脱水反应元件结合蛋白/重复结合因子1(DREB1)有关。[37]
早花百子莲

ApY2SK2 DHN

ApY2SK2 DHN通过螯合金属离子(Fe3+、Cu2+)影响ROS代谢从而激活抗氧化系统,降低低温保存过程中的膜脂过氧化,提高细胞复苏后的存活率。[38]

荷花NnRab18NnRab18可在低温保存过程中直接保护酶活性。[39]
高温
High
temperature
绿豆

VrLEA-2VrLEA-40
VrLEA-47VrLEA-55
热胁迫下,VrLEAs表达显著上调。

[40]

大豆
GmLEA4
钙调蛋白GmCaM1和GmLEA4互作,提高了种子清除ROS的能力,改善种子在高温高湿胁迫下的活力。[41]
豇豆
VuDREB2A
VuDREB2A与启动子中的DRE结合激活下游应激反应基因,热胁迫条件下表现出更强的渗透调节能力和光合作用活性。[42]
盐Salt纤枝短月藓BeLEA5-1BeLEA5-1蛋白的表达提高了大肠杆菌对盐胁迫的耐受力。[43]
黄麻LEA14LEA14在叶片和根部的表达量均在盐处理48 h时达到高峰。[44]
水稻
OsLEA5
OsLEA5参与了ABA介导的抗氧化防御,在水稻的干旱和盐胁迫响应中发挥作用。[45]
大豆
GsPM30
耐盐的正向调节因子GsCBRLKGsPM30相互作用,提高了拟南芥幼苗期和成苗期的耐盐和耐旱性。[46]
紫花苜蓿
MsDIUP1
MsDIUP1可通过调节胁迫信号传导、抗氧化防御、离子平衡、渗透调节和光合作用来提高植物的耐盐性。[47]
重金属
Heavy metal
玉米
ZmDHN13
ZmDHN13过表达烟草通过结合金属和减少ROS的积累,赋予烟草对铜胁迫的耐受性。[48]
耐辐射奇球菌
DrLEA3
定位于细胞膜上的DrLEA3蛋白纯化后,能够结合特定的金属离子,维持细胞内Mn2+、Fe3+等离子的动态平衡。[49]
水稻
OsLea14-A
过表达OsLea14-A降低了转基因植株中Na、Cr和Cu的积累,但增加了Hg的积累。[15]
花生AhLEAs在铝胁迫下,过表达AhLEAs增强了酿酒酵母的活力。[50]
病虫害
Pests and
diseases

谷子SiLEA14过表达SiLEA14的拟南芥植株对灰霉病的抗性增强。[51]
胡桃JrLEAs抗炭疽病品种中JrLEAs的表达水平相对较高。[52]
苏云金芽孢杆菌

Bt-LEA-Ⅱ

一种基于表达载体pHT01的LEA-Ⅱ多肽共表达系统,该系统具有强sigma A依赖性启动子,在IPTG诱导多肽12 h后,Bt晶体蛋白的产量提高了3倍。[53]

小麦
TdLEA3
过表达TdLEA3的拟南芥转基因植株对禾本科镰刀菌、灰霉病菌和黑曲霉具有耐受性。[54]

新窗口打开| 下载CSV


3.1 LEA蛋白参与植物激素信号应答

植物在生长发育和响应逆境胁迫的过程中会受到多种激素的调节,大量的研究[30,51,55]证实LEAs基因参与一系列激素信号应答过程并发挥一定的作用。ABA是一种重要的胁迫激素,大量研究[25,55]表明,胁迫条件下植物体内的ABA含量明显变化,诱导新基因的表达与蛋白的合成,从而增强细胞对各种不良胁迫的抵抗能力。根据LEA结构的差异,可分为ABA依赖型和非ABA依赖型[55]。BnaCPK5通过磷酸化2个核心ABA信号元件来调节胚胎晚期发育丰富蛋白RD29B的表达,从而充当正向调节因子提高油菜的抗旱性[30]。过表达SiLEA14拟南芥植株对灰霉病抗性增强时,其SA和MeJA信号通路的抗病基因出现差异表达,表明LEA蛋白通过调节SA和MeJA信号通路参与生物胁迫的免疫应答过程[51]。赤霉素、细胞分裂素、生长素等也参与植物逆境胁迫应答,这几个植物激素可能交叉存在于LEA基因的表达信号通路中。

3.2 LEA蛋白在非生物胁迫下的表达分析

LEA蛋白作为一种保护细胞结构和大分子的功能性蛋白,可直接响应非生物胁迫。例如,BnLEA3通过提高光合效率和降低ROS积累来改变脂质积累,从而增强甘蓝型油菜的耐旱性[56]

在NaCl和甘露醇处理下,辣椒CaDHN5沉默植株较对照组植株积累更多的超氧阴离子,过表达拟南芥CaDHN5植株在NaCl处理下叶绿素降解减少,与对照组相比丙二醛(MDA)含量存在显著差异[57]。研究[58]发现,LEA蛋白可以有效防止LDH等敏感酶在冷冻或干燥过程中失活,拟南芥LEA7在冷冻条件下保留了LDH和可溶性蛋白质组的酶活性,在体内充当酶保护剂的作用。花生LEA家族的研究[50]发现,AhLEA1的异源表达提高了大肠杆菌对低温(-20 ℃)和干旱(0.5 mol/L甘露醇)的耐受力。

3.3 LEA蛋白在生物胁迫下的表达分析

除了非生物胁迫外,LEA蛋白也参与生物胁迫的响应,过表达小麦DHN-5的转基因拟南芥对真菌灰霉病和早疫病引起的感染具有抗性,过表达TdLEA3的转基因拟南芥植株对禾本科镰刀菌、灰霉病菌和黑曲霉具有耐受性,SA和MeJA作为防御病原体和昆虫的关键信号分子,在病原体侵染下过表达TdLEA3DHN-5植株中MeJA信号通路相关基因(PR1PDF1.2LOX3VSP2)出现差异表达[54]。另外,前人[25,54,59]研究发现脱水素(dehydrin)的K段是提高生物胁迫耐受性的主要区段,同时提出MYC2可能参与了MeJA信号途径的调控。

4 展望

LEA蛋白是一种功能性蛋白,在植物生长发育和响应逆境胁迫中发挥重要作用。目前,从不同的植物中鉴定出各种LEAs基因,并将其作为作物遗传改良、提高作物耐逆性的一个重要因子。研究[25]发现,LEA蛋白分布在细胞的不同部位,其中主要分布在细胞质中,当细胞受到胁迫时,它们可以防止膜和细胞质中的脂质过氧化和蛋白质氧化。DNA极易受到自由基的影响,而存在于细胞核和线粒体中的LEA蛋白可以保护DNA免受氧化损伤。另外,前人[32]从动物上探索各种LEA基因的功能,发现表达AfrLEAs蛋白的黑腹果蝇在干燥和高渗胁迫下的成活率更高,重组LEA蛋白能够抑制干燥引起的线虫和哺乳动物细胞水溶性蛋白质的聚集,表明了LEA蛋白在体内具有抗聚集功能。目前,人们对动物体内LEA蛋白的研究还很少,主要是其功能特性从体外条件转化为体内条件时,必须考虑到LEA蛋白的细胞滴度[32]

LEA蛋白在缓解金属胁迫方面成为一大热点,对金属胁迫的缓解机制主要体现在2个方面,对细胞膜的保护以及对金属胁迫下ROS水平的抑制。研究[19]发现,LEA4亚族的成员AtLEA4-5和GmPM1序列相似性为85%,且都含有几个His残基,都能结合Cu2+,但它们与Fe3+的结合能力却不同;另外大豆GmPM1和GmPM9与Fe3+和Cu2+结合,却不与Ca2+或Mg2+结合。因此,在各亚族及相同或不同物种中,LEA蛋白与金属离子的结合是否存在特异性还有待进一步研究。

目前,LEA蛋白的基因克隆与功能鉴定多集中在模式植物和体外功能试验,虽然有较多研究将LEA基因导入目标植株后,提高了相应的抗逆性,但是尚未见大田试验对LEA蛋白在逆境下植物增产效应的评估。在逆境胁迫下,人们对植物体内ROS的测定大多集中在LDH模式酶上,而不同亚族LEA蛋白对抗氧化酶的保护是否存在特异性,LEA蛋白在不同逆境胁迫下对抗氧化酶的保护是否具有特异性还有待研究。LEA蛋白、MYC2和MeJA在响应生物胁迫的调控机制尚未阐明,K段是否在SA信号途径调节植物防御反应方面发挥作用以及其他亚家族的K段对于提高生物胁迫耐受性是否发挥主要作用还有待研究。

蛋白质的可逆磷酸化是生物体调节其对外部刺激反应的重要机制。干旱信号途径在很大程度上依赖于ABA的生物合成和信号转导,而ABA和干旱诱导基因的启动子区域都含有ABA响应元件(ABRE),如编码类似于LEA蛋白的RD29A(responsive to dehydration 29A)和RD29B。研究[30]发现,BnaCPK5通过与2个核心ABA信号转导因子相互作用并使其磷酸化来发挥作用,这种磷酸化增强了BnaABF3/4的转录活性和稳定性,提高了RD29B的表达,从而充当耐旱性的正向调节因子。LEA蛋白的Ser和Tyr残基被认为是激酶的磷酸化位点,因此,除了干旱胁迫外,在盐胁迫、高温、低温等非生物胁迫中,LEA蛋白是否被激酶磷酸化,从而提高其耐逆性,值得我们进一步探究。

参考文献

Dure L, Greenway S C, Galau G A.

Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis

Biochemistry, 1981, 20(14):4162-4168.

DOI:10.1021/bi00517a033      PMID:7284317      [本文引用: 2]

Changes in messenger ribonucleic acid (mRNA) populations during embryogenesis of cottonseed have been followed by cataloging (a) extant proteins, (b) proteins synthesized in vivo, and (c) proteins synthesized in vitro from extracted RNA, all at specific stages of embryogenesis. Evidence is presented for the existence of five mRNA subsets, all apparently under different regulatory regimes, that produce the abundant proteins of embryogenesis. One of these functions principally during the cell division phase of embryogenesis and encodes among its products the seed storage proteins whose mRNA is superabundant during this period. This subset has disappeared from the abundant group by the mature seed stage. Two other subsets appear in late embryogenesis, one of which may result from the removal of the embryo from the maternal environment, since it is inducible by excision of the young embryo from the seed. The other appears to be induced by the plant growth regulator abscisic acid, whose endogenous concentration increases at this stage. It can be induced by incubating excised young embryos in abscisic acid. The last two subsets exist throughout embryogenesis, but only one of them appears to function in germination.

Sasaki K, Christov N K, Tsuda S, et al.

Identification of a novel LEA protein involved in freezing tolerance in wheat

Plant and Cell Physiology, 2014, 55(1):136-147.

DOI:10.1093/pcp/pct164      PMID:24265272      [本文引用: 2]

Late embryogenesis abundant (LEA) proteins are a family of hyper-hydrophilic proteins that accumulate in response to cellular dehydration. Originally identified as plant proteins associated with seed desiccation tolerance, LEA proteins have been identified in a wide range of organisms such as invertebrates and microorganisms. LEA proteins are thought to protect proteins and biomembranes under water-deficit conditions. Here, we characterized WCI16, a wheat (Triticum aestivum) protein that belongs to a class of plant proteins of unknown function, and provide evidence that WCI16 shares common features with LEA proteins. WCI16 was induced during cold acclimation in winter wheat. Based on its amino acid sequence, WCI16 is highly hydrophilic, like LEA proteins, despite having no significant sequence similarity to any of the known classes of LEA proteins. Recombinant WCI16 protein was soluble after boiling, and (1)H-nuclear magnetic resonance (NMR) spectroscopy revealed that the structure of WCI16 is random and has no hydrophobic regions. WCI16 exhibited in vitro cryoprotection of the freeze-labile enzyme l-lactate dehydrogenase as well as double-stranded DNA binding activity, suggesting that WCI16 may protect both proteins and DNA during environmental stresses. The biological relevance of these activities was supported by the subcellular localization of a green fluorescent protein (GFP)-fused WCI16 protein in the nucleus and cytoplasm. Heterologous expression of WCI16 in Arabidopsis (Arabidopsis thaliana) plants conferred enhanced freezing tolerance. Taken together, our results indicate that WCI16 represents a novel class of LEA proteins and is involved in freezing tolerance.

Rivera-Najera L Y, Saab-Rincón G, Battaglia M, et al.

A group 6 late embryogenesis abundant protein from common bean is a disordered protein with extended helical structure and oligomer- forming properties

The Journal of Biological Chemistry, 2014, 289(46):31995-32009.

[本文引用: 1]

Hincha D K, Thalhammer A.

LEA proteins: IDPs with versatile functions in cellular dehydration tolerance

Biochemical Society Transactions, 2012, 40(5):1000-1003.

PMID:22988854      [本文引用: 2]

LEA (late embryogenesis abundant) proteins were originally described almost 30 years ago as accumulating late in plant seed development. They were later found to be induced in vegetative plant tissues under environmental stress conditions and also in desiccation-tolerant micro-organisms and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Most LEA proteins are predicted to be intrinsically disordered and this has been experimentally verified in several cases. In addition, some LEA proteins partially fold, mainly into α-helices, during drying or in the presence of membranes. Recent studies have concentrated on the potential roles of LEA proteins in stabilizing membranes or sensitive enzymes during freezing or drying, and the present review concentrates on these two possible functions of LEA proteins in cellular dehydration tolerance.

Hunault G, Jaspard E.

LEAPdb: a database for the late embryogenesis abundant proteins

BMC Genomics, 2010, 11(1):221.

[本文引用: 3]

周璇. 垫状卷柏LEA1基因的结构与功能分析. 昆明: 西南林业大学, 2022.

[本文引用: 1]

Hundertmark M, Hincha D K.

LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana

BMC Genomics, 2008, 9(1):118.

[本文引用: 2]

Charfeddine S, Saïdi M N, Charfeddine M, et al.

Genome-wide identification and expression profiling of the late embryogenesis abundant genes in potato with emphasis on dehydrins

Molecular Biology Reports, 2015, 42(7):1163-1174.

DOI:10.1007/s11033-015-3853-2      PMID:25638043      [本文引用: 1]

Late embryogenesis abundant (LEA) proteins were first described as accumulating late in plant seed development. They were also shown to be involved in plant responses to environmental stress and as well as in bacteria, yeast and invertebrates. They are known to play crucial roles in dehydration tolerance. This study describes a genome-wide analysis of LEA proteins and the corresponding genes in Solanum tuberosum. Twenty-nine LEA family members encoding genes in the Solanum genome were identified. Phylogenetic analyses allowed the classification of the potato LEA proteins into nine distinct groups. Some of them were identified as putative orthologs of Arabidopsis and rice LEA genes. In silico analyses confirmed the hydrophilicity of most of the StLEA proteins, whereas some of them can be folded. The in silico expression analyses showed that the identified genes displayed tissue-specific, stress and hormone-responsive expression profiles. Five StLEA classified as dehydrins were selected for expression analyses under salt and drought stresses. The data revealed that they were induced by both stresses. The analyses indicate that several factors such us developmental stages, hormones, and dehydration, can regulate the expression and activities of LEA protein. This report can be helpful for the further functional diversity studies and analyses of LEA proteins in potato. These genes can be overexpressed to improve potato abiotic stress response.

Chen J, Li N, Wang X Y, et al.

Late embryogenesis abundant (LEA) gene family in Salvia miltiorrhiza: identification, expression analysis, and response to drought stress

Plant Signaling & Behavior, 2021, 16(5):1891769.

[本文引用: 1]

黄若兰. 花生AhLecRK9AhLEAs在铝胁迫下的功能研究. 南宁: 广西大学, 2023.

[本文引用: 1]

Shih M D, Lin S C, Hsieh J S, et al.

Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16

Plant Molecular Biology, 2004, 56(5):689-703.

[本文引用: 1]

Wang M Z, Li P, Li C, et al.

SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet

BMC Plant Biology, 2014, 14(1):290.

[本文引用: 1]

Lim C W, Lim S, Baek W, et al.

The pepper late embryogenesis abundant protein CaLEA 1 acts in regulating abscisic acid signaling, drought and salt stress response

Physiologia Plantarum, 2015, 154(4):526-542.

[本文引用: 1]

Cuevas-Velazquez C L, Reyes J L, Covarrubias A A.

Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants

Plant Signaling & Behavior, 2017, 12(7):e1343777.

[本文引用: 2]

Hu T Z, Liu Y L, Zhu S S, et al.

Overexpression of OsLea14-A improves the tolerance of rice and increases Hg accumulation under diverse stresses

Environmental Science and Pollution Research, 2019, 26(11):10537-10551.

[本文引用: 2]

Battaglia M, Covarrubias A A.

Late embryogenesis abundant (LEA) proteins in legumes

Frontiers in Plant Science, 2013, 4:190.

[本文引用: 1]

潘潇潇, 胡慧芳, 陈楠, .

脱水素在植物非生物胁迫中的作用研究进展

农业生物技术学报, 2022, 30(3):594-605.

[本文引用: 1]

Sun X, Rikkerink E H A, Jones W T, et al.

Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology

The Plant Cell, 2013, 25(1):38-55.

DOI:10.1105/tpc.112.106062      PMID:23362206      [本文引用: 4]

Intrinsically disordered proteins (IDPs) are highly abundant in eukaryotic proteomes. Plant IDPs play critical roles in plant biology and often act as integrators of signals from multiple plant regulatory and environmental inputs. Binding promiscuity and plasticity allow IDPs to interact with multiple partners in protein interaction networks and provide important functional advantages in molecular recognition through transient protein-protein interactions. Short interaction-prone segments within IDPs, termed molecular recognition features, represent potential binding sites that can undergo disorder-to-order transition upon binding to their partners. In this review, we summarize the evidence for the importance of IDPs in plant biology and evaluate the functions associated with intrinsic disorder in five different types of plant protein families experimentally confirmed as IDPs. Functional studies of these proteins illustrate the broad impact of disorder on many areas of plant biology, including abiotic stress, transcriptional regulation, light perception, and development. Based on the roles of disorder in the protein-protein interactions, we propose various modes of action for plant IDPs that may provide insight for future experimental approaches aimed at understanding the molecular basis of protein function within important plant pathways.

French-Pacheco L, Cuevas-Velazquez C L, Rivillas-Acevedo L, et al.

Metal-binding polymorphism in late embryogenesis abundant protein AtLEA4-5, an intrinsically disordered protein

PeerJ, 2018, 6(1):e4930.

[本文引用: 2]

李承娜, 高阳, 刘子明, .

大豆PM1蛋白抗氧化作用及提高酵母对铜耐受力

深圳大学学报(理工版), 2017, 34(5):457-463.

[本文引用: 1]

Hara M, Fujinaga M, Kuboi T.

Radical scavenging activity and oxidative modification of citrus dehydrin

Plant Physiology and Biochemistry, 2004, 42(7):657-662.

[本文引用: 2]

刘星辰, 吕爱敏, 邢强, .

转紫花苜蓿MsLEA2基因提高拟南芥耐铝毒性研究

中国草地学报, 2019, 41(2):30-35.

[本文引用: 2]

Veeranagamallaiah G, Prasanthi J, Reddy K E, et al.

Group 1 and 2 LEA protein expression correlates with a decrease in water stress induced protein aggregation in horsegram during germination and seedling growth

Journal of Plant Physiology, 2011, 168(7):671-677.

DOI:10.1016/j.jplph.2010.09.007      PMID:21035898      [本文引用: 1]

Plants produce an array of proteins as a part of a global response to protect the cell metabolism when they grow under environmental conditions such as drought and salinity that generate reduced water potential. The synthesis of hydrophilic proteins is a major part of the response to water deficit conditions. An increased expression of LEA proteins is thought to be one of the primary lines of defense to prevent the loss of intercellular water during adverse conditions. These LEA proteins are known to prevent aggregation of a wide range of other proteins. In this study we report the water stress induced protein aggregation and its abrogation followed by expression of group 1 and group 2 LEA proteins of water soluble proteomes in horsegram. Water stress caused an increased protein aggregation with magnitude and duration of stress in horsegram seedlings. Tissue-specific expression of LEA 1 protein decreased in the embryonic axis when compared to cotyledons in 24h stressed seedlings. We found no cross reaction of LEA 1 with proteome of 48h stressed embryonic axis and 72h stressed root and shoot samples. However, LEA 2 antibodies were cross reacted with four polypeptides with different molecular mass in shoot tissue samples and found no reaction with root proteome as evidenced from immuno-blot analysis. The role of LEA proteins in relation to protein aggregation during water stressed conditions was discussed.Copyright © 2010 Elsevier GmbH. All rights reserved.

Hara M, Endo T, Kamiya K, et al.

The role of hydrophobic amino acids of K-segments in the cryoprotection of lactate dehydrogenase by dehydrins

Journal of Plant Physiology, 2017, 210:18-23.

DOI:S0176-1617(16)30281-4      PMID:28040625      [本文引用: 1]

Dehydrins, which are group 2 late embryogenesis abundant (LEA) proteins, accumulate in plants during the development of the embryo and exposure to abiotic stresses including low temperature. Dehydrins exhibit cryoprotection of freezing-sensitive enzymes, e.g. lactate dehydrogenase (LDH). Although it has been reported that K-segments conserved in dehydrins are related to their cryoprotection activity, it has not been determined which sequence features of the K-segments contribute to the cryoprotection. A cryoprotection assay using LDH indicated that 13 K-segments including 12 K-segments found in Arabidopsis dehydrins and a typical K-segment (TypK, EKKGIMEKIKEKLPG) derived from the K-segments of many plants showed similar cryoprotective activities. Mutation of the TypK sequence demonstrated that hydrophobic amino acids were clearly involved in preventing the cryoinactivation, cryoaggregation, and cryodenaturation of LDH. We propose that the cryoprotective activities of dehydrins may be made possible by the hydrophobic residues of the K-segments.Copyright © 2016 Elsevier GmbH. All rights reserved.

Vazquez-Hernandez M, Romero I, Sanchez-Ballesta M T, et al.

Functional characterization of VviDHN2 and VviDHN4 dehydrin isoforms from Vitis vinifera (L.): an in silico and in vitro approach

Plant Physiology and Biochemistry, 2021, 158:146-157.

DOI:10.1016/j.plaphy.2020.12.003      PMID:33310482      [本文引用: 4]

Dehydrins, a family of hydrophilic and intrinsically disordered proteins, are a subgroup of late embryogenesis abundant proteins that perform different protective roles in plants. Although the transition from a disordered to an ordered state has been associated with dehydrin function or interactions with specific partner molecules, the question of how the primary and secondary dehydrin protein structure is related to specific functions or target molecule preferences remains unresolved. This work addresses the in silico sequencing analysis and in vitro functional characterization of two dehydrin isoforms, VviDHN2 and VviDHN4, from Vitis vinifera. Conformational changes suggest potential interactions with a broad range of molecules and could point to more than one function. The in silico analysis showed differences in conserved segments, specific amino acid binding sequences, heterogeneity of structural properties and predicted sites accessible for various post-translational modifications between the sequence of both dehydrins. Moreover, in vitro functional analysis revealed that although they both showed slight antifungal activity, only VviDHN4 acts as a molecular shield that protects proteins from freezing and dehydration. VviDHN4 also demonstrated high potential as a chaperone and reactive oxygen species scavenger, in addition to presenting antifreeze activity, all of which confirms its multifunctional nature. Our findings highlight the significant role of Y-segments and the differential and specific amino acid composition of less conserved segments that are rich in polar/charged residues between S- and K-segments, coupled with post-translational modifications, in modulating and switching dehydrin biological function.Copyright © 2020 Elsevier Masson SAS. All rights reserved.

Candat A, Paszkiewicz G, Neveu M, et al.

The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress

The Plant Cell, 2014, 26(7):3148-3166.

[本文引用: 1]

任菲, 卢苗苗, 刘吉祥, .

蜡梅胚胎晚期丰富蛋白基因CpLEA的表达及抗性分析

园艺学报, 2023, 50(2):359-370.

DOI:10.16420/j.issn.0513-353x.2021-0987      [本文引用: 1]

将蜡梅(Chimonanthus praecox)第3组LEA蛋白基因CpLEA在大肠杆菌中进行诱导表达,结果发现CpLEA重组蛋白在体外低温胁迫下能够保护乳酸脱氢酶的活性,且转CpLEA大肠杆菌的抗寒性有所提高;该基因在拟南芥中超表达,拟南芥的抗寒性和抗旱性均有所提高,且抗性的提高程度与基因过表达的积累量正相关,证实该基因能够参与植物的抗逆过程,在低温和渗透胁迫响应中发挥一定作用。通过qRT-PCR进一步分析花蕾期和露瓣期蜡梅瓶插花在低温(4 ℃)胁迫后CpLEA的表达特性,结果表明:与对照(22 ℃)相比,花蕾期CpLEA表达量在低温胁迫后逐渐升高,48 h达到峰值,约为未处理表达量的28倍,随后表达量下降,但仍然高于对照;露瓣期时该基因表达量随低温处理时间的延长逐渐升高,72 h后达到最高,约为未处理表达量的9倍。室温下蜡梅瓶插花中CpLEA的表达量基本恒定,而低温处理则可诱导该基因在蜡梅花发育早期表达量有不同程度的提高。

张前进, 曹丽茹, 马晨晨, .

玉米ZmLEA34基因的分子特性、克隆和响应干旱胁迫的表达分析

山东农业大学学报(自然科学版), 2022, 53(5):665-672.

[本文引用: 1]

Wang G, Su H, Abou-Elwafa S F, et al.

Functional analysis of a late embryogenesis abundant protein ZmNHL 1 in maize under drought stress

Journal of Plant Physiology, 2023, 280:153883.

[本文引用: 1]

Cheng H K, Pan G Y, Zhou N, et al.

Calcium-dependent protein kinase 5 (CPK5) positively modulates drought tolerance through phosphorylating ABA-responsive element binding factors in oilseed rape (Brassica napus L.)

Plant Science, 2022, 315:111125.

[本文引用: 4]

Shiraku M L, Magwanga R O, Zhang Y Y, et al.

Late embryogenesis abundant gene LEA 3 (Gh_A08G0694) enhances drought and salt stress tolerance in cotton

International Journal of Biological Macromolecules, 2022, 207:700-714.

[本文引用: 1]

Anderson J M, Hand S C.

Transgenic expression of late embryogenesis abundant proteins improves tolerance to water stress in Drosophila melanogaster

Journal of Experimental Biology, 2021, 224(4):238204.

[本文引用: 3]

Burkhard B, Xuehuan F, Yanbin Y, et al.

Desiccation tolerance in Streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the viridiplantae

Journal of Experimental Botany, 2020, 11(7):3270-3278.

[本文引用: 1]

陈凯, 佟晓楠, 张晓媛, .

枳LEA基因家族鉴定及其对非生物胁迫的响应

西北植物学报, 2023, 43(6):918-928.

[本文引用: 1]

王光鹏, 刘同坤, 徐新凤, .

大白菜LEA家族基因的鉴定及其部分成员在低温胁迫下的表达分析

园艺学报, 2022, 49(2):304-318.

DOI:10.16420/j.issn.0513-353x.2021-0044      [本文引用: 1]

基于大白菜全基因组数据对LEA家族基因进行全基因组鉴定与生物信息学分析,研究其序列特征、基因结构、启动子顺式作用元件、染色体定位、进化关系以及在不同组织中和低温胁迫下的表达模式。从大白菜基因组中总共鉴定出65个LEA家族基因成员,根据系统发育与保守基序分析,其可分为8个组;内含子较少,且不均匀地分布在10条染色体上,另有3个成员位于Scaffold上。启动子顺式作用元件分析显示,有29个(44.6%)成员拥有低温响应元件,除此之外,光响应元件和激素响应元件占比较高。共线性分析显示,大白菜BrLEA与拟南芥AtLEA同源性较高,并在进化中较为保守。大白菜不同组织转录组数据表明,BrLEA基因在大白菜不同组织中的表达存在组织特异性。对筛选出的13个家族成员进行低温胁迫表达分析表明,受低温胁迫表达量都有所升高。

Gao T, Mo Y X, Huang H Y, et al.

Heterologous expression of Camellia sinensis late embryogenesis abundant protein gene 1 (CsLEA1) confers cold stress tolerance in Escherichia coli and yeast

Horticultural Plant Journal, 2021, 7(1):89-96.

[本文引用: 1]

Shibuya T, Itai R, Maeda M, et al.

Characterization of PcLEA14, a group 5 late embryogenesis abundant protein gene from pear (Pyrus communis)

Plants, 2020, 9(9),1138.

[本文引用: 1]

Liu T, Zhang Y Y, Chu Y X, et al.

Oxidative stress protective function of ApY2SK 2 dehydrin: a late embryogenesis abundant protein in embryogenic callus of Agapanthus praecox to promote post-cryopreservation survival

Plant Cell,Tissue and Organ Culture, 2022, 149(3):799-808.

[本文引用: 1]

Sheng J Y, Liu T, Zhang D.

Exogenous dehydrin NnRab18 improves the Arabidopsis cryopreservation by affecting ROS metabolism and protecting antioxidase activities

In Vitro Cellular & Development Biology, 2022, 58(4):530-539.

[本文引用: 1]

Singh C M, Kumar M, Pratap A, et al.

Genome-Wide analysis of late embryogenesis abundant protein gene family in vigna species and expression of VrLEA encoding genes in vigna glabrescens reveal its role in heat tolerance

Frontiers in Plant Science, 2022, 13:843107.

[本文引用: 1]

Shen Y Z, Wei J P, Zhou Y L, et al.

Soybean late embryogenesis abundant protein GmLEA4 interacts with GmCaM1, enhancing seed vigor in transgenic Arabidopsis under high temperature and humidity stress

Plant Growth Regulation, 2023, 99:583-595.

[本文引用: 1]

Kumar S, Muthuvel J, Sadhukhan A, et al.

Enhanced osmotic adjustment, antioxidant defense, and photosynthesis efficiency under drought and heat stress of transgenic cowpea overexpressing an engineered DREB transcription factor

Plant Physiology and Biochemistry, 2022, 193:1-13.

DOI:10.1016/j.plaphy.2022.09.028      PMID:36306675      [本文引用: 1]

Cowpea is sensitive to drought and heat stress, particularly at the reproductive stages of development. Both stresses limit growth and yield, and their effect is more devastating when occurring concurrently. Dehydration-responsive element-binding protein 2A (DREB2A) is an important signaling hub integrating information about two different abiotic stresses, drought and heat. We identified VuDREB2A as a canonical DREB ortholog in cowpea, activating downstream stress-responsive genes by binding to DREs in their promoter. Post-translational modification of a negative regulatory domain (NRD) within the VuDREB2A protein prevents its degradation. Targeted deletion of the NRD produces a stable and constitutively active form VuDREB2A-CA. However, there is very little evidence of its practical utility under field conditions. This study overexpressed the VuDREB2A-CA in a popular cowpea variety and conducted drought- and heat-tolerance experiments across various stress regimes. Transgenic cowpea exhibited significant tolerance with consistently higher yield when exposed to over 30-d drought stress and 3-d exposure to high temperature (28 °C-52 °C) without any pleiotropic alterations. The transgenic lines showed higher photosynthetic efficiency, osmotic adjustment, antioxidant defense, thermotolerance, and significantly higher survival and increased biomass than the wild type. Late embryogenesis abundant 5, heat shock protein 70, dehydrin, mitogen-activated protein kinase 2/4, isoflavonoid reductase, and myoinositol phosphate synthase were upregulated in transgenic lines under drought and heat stress. Through transcriptome analysis of the transgenic lines, we found significant up-regulation of various stress-responsive cowpea genes, having DRE in their promoter. Our results suggest that overexpression of VuDREB2A could improve cowpea production under drought and high temperatures.Copyright © 2022 Elsevier Masson SAS. All rights reserved.

李雪宝. 纤枝短月藓LEA基因家族的结构特征与功能分析. 昆明: 西南林业大学, 2022.

[本文引用: 1]

陈毓娜, Manuel S F, 李静, .

黄麻与其他物种HD-ZIP Ⅰ和LEA14蛋白序列同源性及其盐胁迫表达分析

福建农林大学学报(自然科学版), 2022, 51(3):298-306.

[本文引用: 1]

Huang L P, Zhang M Y, Jia J, et al.

An atypical late embryogenesis abundant protein OsLEA 5 plays a positive role in ABA-Induced antioxidant defense in Oryza sativa L

Plant & Cell Physiology, 2018, 59(5):916-929.

[本文引用: 1]

Sun M Z, Shen Y, Yin K, et al.

A late embryogenesis abundant protein GsPM30 interacts with a receptor like cytoplasmic kinase GsCBRLK and regulates environmental stress responses

Plant Science, 2019, 283:70-82.

DOI:S0168-9452(18)31335-9      PMID:31128717      [本文引用: 1]

A Glycine soja receptor like cytoplasmic kinase GsCBRLK was previously characterized as a positive regulator of salt tolerance. However, how GsCBRLK regulates stress responses remains obscure. Here, we report the interaction between GsCBRLK and a group 3 late embryogenesis abundant protein GsPM30, and suggest its role in stress responses. GsPM30 was found to physically associate with GsCBRLK through yeast two hybrid assays, which was verified by bimolecular fluorescence complementation analysis. Deletion analyses showed that the N-terminal variable domain of GsCBRLK was sufficient for GsPM30 interaction. Besides GsPM30, GsCBRLK could associate with several group 3 LEAs, of which the N-terminus sequences show high identity with GsPM30. Lower binding affinity or even no interaction was observed between GsCBRLK and other group 3 LEAs, which are less closely related to GsPM30. Furthermore, we observed that GsPM30 could localize surrounding the internal circumference of plant cells, as well as in cytoplasm and nucleus. In addition, GUS staining and quantitative real-time PCR results suggested the ubiquitous expression in different tissues and induced expression by NaCl and mannitol treatments for GsPM30. Consistently, GsPM30 overexpression in Arabidopsis caused increased tolerance to high salinity and dehydration/water deficit at both the young and adult seedling stages. Our results demonstrated the interaction between GsCBRLK and LEAs, and revealed the positive role of GsPM30 in stress responses.Copyright © 2019 Elsevier B.V. All rights reserved.

Luo D, Zhang X, Li Y L, et al.

MsDIUP1encoding a putative novel LEA protein positively modulates salt tolerance in alfalfa (Medicago sativa L.)

Plant and Soil, 2023, 487(1/2):547-566.

[本文引用: 1]

Liu Y, Li D X, Song Q P, et al.

The maize late embryogenesis abundant protein ZmDHN13 positively regulates copper tolerance in transgenic yeast and tobacco

The Crop Journal, 2019, 7(3):403-410.

[本文引用: 1]

Dai J L, Gao K X, Yao T, et al.

Late embryogenesis abundant group3 protein (DrLEA3) is involved in antioxidation in the extremophilic bacterium Deinococcus radiodurans

Microbiological Research, 2020, 240:126559.

[本文引用: 1]

Huang R L, Xiao D, Wang X, et al.

Genome-wide identification, evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.)

BMC Plant Biology, 2022, 22(1):1-22.

[本文引用: 2]

杨剑. 谷子LEA-2基因家族鉴定及SiLEA14参与谷子逆境胁迫响应的功能研究. 太原: 山西大学, 2023.

[本文引用: 3]

Ma J Y, Zuo D J, Ye H, et al.

Genome-wide identification, characterization, and expression pattern of the late embryogenesis abundant (LEA) gene family in Juglans regia and its wild relatives Jmandshurica

BMC Plant Biology, 2023, 23(1):80.

[本文引用: 1]

Akhtar M, Mizuta K, Shimokawa T, et al.

Enhanced insecticidal activity of Bacillus thuringiensis using a late embryogenesis abundant peptide co-expression system

Journal of Microbiological Methods, 2021, 188:106207.

[本文引用: 1]

Koubaa S, Brini F.

Functional analysis of a wheat group 3 late embryogenesis abundant protein (TdLEA3) in Arabidopsis thaliana under abiotic and biotic stresses

Plant Physiology and Biochemistry, 2020, 156:396-406.

DOI:10.1016/j.plaphy.2020.09.028      PMID:33032258      [本文引用: 3]

Late embryogenesis abundant (LEA) proteins are highly hydrophilic and thermostable proteins that could be induced by abiotic stresses in plants. Previously, we have isolated a group 3 LEA gene TdLEA3 in wheat. The data show that TdLEA3 was largely disordered under fully hydrated conditions and was able to prevent the inactivation of lactate dehydrogenase (LDH) under stress treatments. In the present work, we further investigate the role of TdLEA3 by analyzing its expression pattern under abiotic stress conditions in two contrasting wheat genotypes and by overexpressing it in Arabidopsis thaliana. Transgenic Arabidopsis plants showed higher tolerance levels to salt and oxidative stress compared to the wild type plants. Meanwhile, there was significant increase in antioxidants, catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) accumulation, increased root length and significant reduction in oxidants, hydrogen peroxide (HO) and malondialdehyde (MDA) content in the leaves of transgenic lines under stress conditions. Accordingly, Q-PCR results indicate that the higher levels of expression of different ROS scavenging genes (AtP5CS, AtCAT, AtPOD and AtSOD) and abiotic stress related genes (RAB18 and RD29B) were detected in transgenic lines. In addition, they showed increased resistance to fungal infections caused by Fusarium graminearum, Botrytis cinerea and Aspergillus niger. Finally, Q-PCR results for biotic stress related genes (PR1, PDF1.2, LOX3 and VSP2) showed differential expression in transgenic TdLEA3 lines. All these results strongly reinforce the interest of TdLEA3 in plant adaptation to various stresses.Copyright © 2020 Elsevier Masson SAS. All rights reserved.

王西子, 信欣, 张方亦琢, .

植物脱水素的生物学功能与调控机制研究进展

植物生理学报, 2022, 58(9):1617-1628.

[本文引用: 3]

Liang Y, Kang K, Gan L, et al.

Drought-responsive genes,late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate,function in lipid accumulation in Brassica napus and arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS

Plant Biotechnology Journal, 2019, 17(11):2123-2142.

DOI:10.1111/pbi.13127      PMID:30972883      [本文引用: 1]

Drought is an abiotic stress that affects plant growth, and lipids are the main economic factor in the agricultural production of oil crops. However, the molecular mechanisms of drought response function in lipid metabolism remain little known. In this study, overexpression (OE) of different copies of the drought response genes LEA3 and VOC enhanced both drought tolerance and oil content in Brassica napus and Arabidopsis. Meanwhile, seed size, membrane stability and seed weight were also improved in OE lines. In contrast, oil content and drought tolerance were decreased in the AtLEA3 mutant (atlea3) and AtVOC-RNAi of Arabidopsis and in both BnLEA-RNAi and BnVOC-RNAi B. napus RNAi lines. Hybrids between two lines with increased or reduced expression (LEA3-OE with VOC-OE, atlea3 with AtVOC-RNAi) showed corresponding stronger trends in drought tolerance and lipid metabolism. Comparative transcriptomic analysis revealed the mechanisms of drought response gene function in lipid accumulation and drought tolerance. Gene networks involved in fatty acid (FA) synthesis and FA degradation were up- and down-regulated in OE lines, respectively. Key genes in the photosynthetic system and reactive oxygen species (ROS) metabolism were up-regulated in OE lines and down-regulated in atlea3 and AtVOC-RNAi lines, including LACS9, LIPASE1, PSAN, LOX2 and SOD1. Further analysis of photosynthetic and ROS enzymatic activities confirmed that the drought response genes LEA3 and VOC altered lipid accumulation mainly via enhancing photosynthetic efficiency and reducing ROS. The present study provides a novel way to improve lipid accumulation in plants, especially in oil production crops.© 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

Luo D, Hou X M, Zhang Y M, et al.

CaDHN5, a dehydrin gene from pepper, plays an important role in salt and osmotic stress responses

International Journal of Molecular Sciences, 2019, 20(8):1989.

[本文引用: 1]

Popova A V, Rausch S, Hundertmark M, et al.

The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying

Biochimica Biophysica Acta, 2015, 1854:151715-151725.

[本文引用: 1]

Drira M, Hanin M, Masmoudi K, et al.

Comparison of full-length and conserved segments of wheat dehydrin DHN-5 overexpressed in Arabidopsis thaliana showed different responses to abiotic and biotic stress

Functional Plant Biology, 2016, 43(11):1048-1060.

[本文引用: 1]

/