作物杂志,2016, 第2期: 8–13 doi: 10.16035/j.issn.1001-7283.2016.02.002

所属专题: 玉米专题

• 专题综述 • 上一篇    下一篇

玉米株高QTL定位研究进展

郑雷1,2,周羽1,曾兴1,邸宏1,翁建峰2,李新海2,王振华1   

  1. 1 东北农业大学农学院,150030,黑龙江哈尔滨
    2 中国农业科学院作物科学研究所/作物分子育种国家工程实验室,100081,北京
  • 收稿日期:2015-12-21 修回日期:2016-02-01 出版日期:2016-04-15 发布日期:2018-08-26
  • 通讯作者: 李新海,王振华
  • 作者简介:郑雷,硕士研究生,研究方向为作物遗传育种
  • 基金资助:
    转基因生物新品种培育重大专项“高产转基因玉米新品种培育”(2014ZX08003003-005)

QTL Mapping of Plant Height in Maize

Zheng Lei1,2,Zhou Yu1,Zeng Xing1,Di Hong1,Weng Jianfeng2,Li Xinhai2,Wang Zhenhua1   

  1. 1 College of Agriculture,Northeast Agricultural University,Harbin 150030,Heilongjiang,China
    2 Institute of Crop Science,Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding,Beijing 100081,China
  • Received:2015-12-21 Revised:2016-02-01 Online:2016-04-15 Published:2018-08-26
  • Contact: Xinhai Li,Zhenhua Wang

摘要:

株高作为玉米的重要农艺性状,对产量、耐肥性、抗倒伏影响显著。随着分子生物学的发展,针对玉米株高性状开展了大量研究工作。总结玉米株高相关的QTL定位和基因克隆研究进展,并采用元分析技术对187个信息完整的玉米株高QTL定位结果进行整合分析,获得10个一致性QTL,并在一致性QTL置信区间内发掘可能参与玉米株高调控的候选基因。

关键词: 玉米, 株高, QTL, 元分析, 候选基因

Abstract:

Plant height is an important agronomic trait that significantly effects grain yield, fertilizer tolerance and lodging resistance in maize. With the development of molecular biology, numbers of studies on QTL mapping of plant height have been carried out in maize. In this research, QTL mapping and gene cloning of plant height were summarized in mazie. With the meta-analysis, 187 QTL underlying plant height were integrated and analyzed, and 10 “consensus” QTL were obtained. In the “consistency” QTL confidence interval, candidate genes involving in the regulation of plant height were explored.

Key words: Maize, Plant height, QTL, Meta-analysis, Candidate gene

图1

玉米株高QTLs整合图谱标记位置和标记名称位于连锁群的右侧;QTLs位于连锁群的左侧,垂直线代表QTL置信区间,水平线代表位点LOD值。"

表1

玉米株高性状QTL元分析"

一致性QTL
Meta-QTL
bin Meta-QTL置信区间
Interval of Meta-QTL(cM)
物理图谱区间
Interval of physical map(Mb)
左标记
Left marker
右标记
Right marker
MQTL1 2.01 82.18~89.07 3.126~3.389 isu144a IDP7335
MQTL2 3.05 364.00~368.85 158.892~166.073 pza00828 drh1
MQTL3 4.04 231.51~250.84 27.094~41.785 IDP510 bm3
MQTL4 4.09 608.84~623.07 231.480~234.429 IDP1646 CL14140_1
MQTL5 5.03 218.96~230.61 18.015~23.783 umc2512 pco093291
MQTL6 5.05 406.04~418.89 175.652~182.584 mmp47 uaz79
MQTL7 5.06 529.37~538.29 203.678~204.631 agrp90 umc2201
MQTL8 9.05 351.87~364.46 133.207~138.424 umc1387 umc1494
MQTL9 10.03 219.66~224.03 82.165~85.645 uaz100(prl) bnlg1655
MQTL10 10.04 294.65~304.09 121.417~128.374 pseudo(gpa1)1 sam1

表2

玉米株高性状基因"

基因
Gene
染色体
Chromosome
bin 基因
Gene
染色体
Chromosome
bin
ct2 1 1.01 na1 3 3.07
br2 1 1.06 mn5 5 5.05
an1 1 1.08 na2 5 5.03
d8 1 1.09 d9 5 5.01
mpl1 1 1.09 sxd1 5 5.04
rd1 1 1.11 bv1 5 5.04
d5 2 2.02 td1 5 5.04
wrp1 2 2.04 rd2 6 6.00
d10 2 2.08 tan1 6 6.05
d1 3 3.02 ct1 8 8.01
sdw2 3 3.05 clt1 8 8.05
yd2 3 3.06 d2 9 9.03

表3

一致性QTL置信区间控制玉米株高的候选基因"

一致性QTL Meta-QTL bin 候选基因Candidate gene 功能注释Function annotation
MQTL1 2.01 GRMZM2G119941 cell wall invertase Incw4
GRMZM2G034840 auxin response factor 4
MQTL2 3.05 GRMZM2G004161 TAZ transcription factor
GRMZM2G025742 auxin efflux carrier component 6
MQTL3 4.04 AC196475.3_FG004 brown midrib3
GRMZM2G402653 putative oxysterol binding domain family protein
GRMZM2G420812 SAUR31-auxin-responsive SAUR family member
GRMZM2G059544 IAA25-auxin-responsive Aux/IAA family member
MQTL5 5.03 ZEAMMB73_063572 SAUR56-auxin-responsive SAUR family member
ZEAMMB73_450421 gibberellin 20 oxidase 2
MQTL6 5.05 GRMZM2G459166 F-box protein GID2
MQTL9 10.03 GRMZM2G016254 terpene synthase 6
[1] Duvick D N . Genetic progress in yield of United States maize(Zea mays L.). Maydica, 2005,50:193-202.
[2] Robertson D S . A possible technique for isolating genic DNA for quantitative traits in plants. Journal of Theoretical Biology, 1985,117(1):1-10.
doi: 10.1016/S0022-5193(85)80161-2
[3] Jensen J . Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theoretical & Applied Genetics, 1989,78(5):613-618.
[4] Edwards M D, Helentjaris T, Wright S , et al. Molecular-marker-facilitated investigations of quantitative trait loci in maize. Theoretical & Applied Genetics, 1992,83(6/7):765-774.
[5] Melchinger A E, Utz H F, Schön C C . Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998,149(1):383-403.
[6] Veldboom L R, Lee M, Woodman W L . Molecular marker-facilitated studies in an elite maize population:I.Linkage analysis and determination of QTL for morphological traits. Theoretical & Applied Genetics, 1994,88(1):7-16.
[7] Schön C C, Melchinger A E . RFLP mapping in maize:quantitative trait loci affecting testcross performance of elite European flint lines. Crop Science, 1994,34(2):378-389.
doi: 10.2135/cropsci1994.0011183X003400020014x
[8] 王翠玲, 孙朝辉, 库丽霞 , 等. 利用永久F2群体在不同光周期环境下定位玉米株高QTL. 作物学报, 2011,37(2):271-279.
doi: 10.3724/SP.J.1006.2011.00271
[9] 张志明, 赵茂俊, 荣廷昭 , 等. 玉米SSR连锁图谱构建与株高及穗位高QTL定位. 作物学报, 2007,2(2):341-344.
[10] 杨晓军, 路明, 张世煌 , 等. 玉米株高和穗位高的QTL定位. 遗传, 2009,30(11):1477-1486.
[11] 刘华伟 . 玉米株型相关性状QTL定位与分析. 郑州:河南农业大学, 2009.
[12] 赵文明 . 玉米株型相关性状QTL定位与分析. 郑州:河南农业大学, 2008.
[13] 孙海艳, 蔡一林, 王久光 , 等. 玉米株型性状的QTL定位. 西南大学学报(自然科学版), 2010,32(12):14-18.
[14] 徐德林, 蔡一林, 吕学高 , 等. 玉米株型性状的QTL定位. 玉米科学, 2009,6(6):27-31.
[15] 郭莹 . 利用不同F2群体定位玉米株型性状的QTL. 重庆:西南大学, 2012.
[16] 路明 . 玉米产量及株型性状QTL定位与遗传基础研究. 北京:中国农业科学院, 2007.
[17] 李贤唐 . 玉米四交群体株型及生育期相关性状的QTL分析. 郑州:河南农业大学, 2011.
[18] 孙婷婷 . 玉米遗传图谱构建及重要农艺性状QTL定位. 延吉:延边大学, 2013.
[19] 张君 . 玉米株型及产量相关性状QTL定位与分析. 郑州:河南农业大学, 2010.
[20] 库丽霞 . 玉米株型相关性状分子遗传机理研究. 郑州:河南农业大学, 2010.
[21] 刘鹏飞 . 基于四交群体的玉米耐密性及相关性状QTL定位与分析. 兰州:甘肃农业大学, 2013.
[22] 刘美洲 . 玉米花期、株型、产量性状QTL定位及分析. 石河子:石河子大学, 2008.
[23] Guo B, Sleper D A, Lu P , et al. QTLs associated with resistance to soybean cyst nematode in soybean:Meta-analysis of QTL locations. Crop Science, 2006,46(2):595-602.
doi: 10.2135/cropsci2005.04-0036-2
[24] Teng F, Zhai L H, Liu R X , et al. ZmGA3ox2,a candidate gene for a major QTL,qPH3.1,for plant height in maize. The Plant Journal, 2013,73(3):405-416.
doi: 10.1111/tpj.12038
[25] Xing A, Gao Y, Ye L , et al. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015,66(13):3791.
doi: 10.1093/jxb/erv182
[26] Winkler R G, Helentjaris T . The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. The Plant Cell, 1995,7(8):1307-1317.
doi: 10.1105/tpc.7.8.1307
[27] Lawit S J, Wych H M, Xu D P , et al. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant & Cell Physiology, 2010,51(11):1854-1868.
[28] Peng J, Richards D E, Hartley N M , et al. ‘Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999,400(6741):256-261.
doi: 10.1038/22307
[29] Gomi K, Sasaki A, Itoh H , et al. GID2,an F-box subunit of the SCF E3 complex,specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin. Plant Journal for Cell & Molecular Biology, 2004,37(4):626-634.
[30] Mussig C . Brassinosteroid‐promoted growth. Plant Biology, 2005,7(2):110-117.
doi: 10.1055/s-2005-837493
[31] Thomas H, Chuck G S, Shozo F , et al. Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(49):19814-19819.
doi: 10.1073/pnas.1108359108
[32] Multani D S, Briggs S P, Chamberlin M A , et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003,302(5642):81-84.
doi: 10.1126/science.1086072
[33] Fornalé S, Shi X H, Chai C L , et al. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. The Plant Journal, 2010,64(4):633-644.
doi: 10.1111/tpj.2010.64.issue-4
[34] Vignols F, Rigau J, Torres M A , et al. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell, 1995,7(4):407-416.
doi: 10.1105/tpc.7.4.407
[35] Johal G S, Multani D S, Briggs S P . Isolated nucleic acid molecules encoding the Br2 P-glycoprotein of maize and methods of modifying growth in plants transformed therewith:US,US7612256[P]. 2009-03.
[1] 陈广周 王广福 渠建洲 司雷勇 金 岩 徐淑兔 薛吉全 路海东. 不同玉米自交系子粒脱水速率及其#br# 与主要影响性状的相关分析[J]. 作物杂志, 2018, (5): 33–39
[2] 苏桂华 李春雷, 苏义臣. 吉林省22 份主推玉米品种区域试验评价[J]. 作物杂志, 2018, (5): 63–70
[3] 唐丽媛 李兴河 张素君 王海涛 刘存敬 张香云 张建宏. 陆地棉光合相关性状的QTL 定位分析[J]. 作物杂志, 2018, (5): 85–90
[4] 吴荣华 庄克章 刘 鹏 张春艳. 鲁南地区夏玉米产量对气象因子的响应[J]. 作物杂志, 2018, (5): 104–109
[5] 李少昆 张万旭, 王克如 韩冬生 杨小霞 陈永生. 北疆玉米大田机械粒收质量调查[J]. 作物杂志, 2018, (5): 127–131
[6] 高文俊 杨国义 高新中 玉 柱 许庆方 原向阳 孙耀武. 氮磷钾肥对青贮玉米产量和品质的影响[J]. 作物杂志, 2018, (5): 144–149
[7] 李红燕,王永宏,赵如浪,张文杰,明博,谢瑞芝,王克如,李璐璐,高尚,李少昆. 宁夏引/扬黄灌区玉米子粒脱水模型的构建与应用[J]. 作物杂志, 2018, (4): 149–153
[8] 李少昆,张万旭,王克如,俞万兵,陈永生,韩冬生,杨小霞,刘朝巍,张国强,王浥州,柳枫贺,陈江鲁,杨京京,谢瑞芝,侯鹏,明博. 北疆玉米密植高产宜粒收品种筛选[J]. 作物杂志, 2018, (4): 62–68
[9] 樊艳丽,董会,卢柏山,史亚兴,高宁,史亚民,徐丽,席胜利,张翠芬,刘焱辉. 播期对不同糯玉米品种淀粉糊化特性的影响[J]. 作物杂志, 2018, (4): 79–83
[10] 李少昆,王克如,王延波,赵海岩,沈玉忠,蔡丹丹,肖万欣,姜文野,黄兆福,翟立超,谢瑞芝,侯鹏,明博. 辽宁中部地区玉米机械粒收质量及其限制因素研究[J]. 作物杂志, 2018, (3): 162–167
[11] 史磊,王国宏,王延波,王大为,赵海岩. 玉米杂交种及其亲本子粒脱水速率初步研究[J]. 作物杂志, 2018, (3): 84–89
[12] 王克如,李少昆,王延波,赵海岩,沈玉忠,蔡丹丹,肖万欣,姜文野,黄兆福,翟立超,李璐璐,谢瑞芝,侯鹏,明博. 辽宁中部适宜机械粒收玉米品种的筛选[J]. 作物杂志, 2018, (3): 97–102
[13] 杨京京,陈江鲁