作物杂志,2017, 第2期: 14–22 doi: 10.16035/j.issn.1001-7283.2017.02.003

• 专题综述 • 上一篇    下一篇

NAC转录因子在植物抗非生物胁迫基因工程中的应用进展

段俊枝1,李莹2,赵明忠1,李清州1,张莉1,魏小春1,任银铃1   

  1. 1 河南省农业科学院,450002,河南郑州
    2 《河南农业大学学报》编辑部,450002,河南郑州
  • 收稿日期:2016-12-28 修回日期:2017-02-28 出版日期:2017-04-15 发布日期:2018-08-26
  • 作者简介:段俊枝,助理研究员,从事植物遗传育种及抗逆性研究方面的工作
  • 基金资助:
    河南省农业科学院高层次人才科研启动经费(豫财教[2013]232号2060503);国家大宗蔬菜产业技术体系豫北综合试验站项目(CARS-25-G-27);国家自然科学基金(30871512);国家自然科学基金(31000701)

Progress on Application of NAC Transcription Factors in Plant Abiotic Tolerance Genetic Engineering

Duan Junzhi1,Li Ying2,Zhao Mingzhong1,Li Qingzhou1,Zhang Li1,Wei Xiaochun1,Ren Yinling1   

  1. 1 Henan Academy of Agricultural Sciences,Zhengzhou 450002,Henan,China
    2 Editorial Department of Journal of Henan Agricultural University,Zhengzhou 450002,Henan,China
  • Received:2016-12-28 Revised:2017-02-28 Online:2017-04-15 Published:2018-08-26

摘要:

植物在生长发育过程中,经常会遭遇各种非生物胁迫,影响其生长发育甚至产量。NAC转录因子是植物特有的、最大的转录因子家族之一,在植物生长发育及抵御多种非生物胁迫反应中具有重要的调控作用。从NAC转录因子对植物的抗逆时期(生殖生长期、营养生长期)及抗逆范围(单一抗性、综合抗性)影响方面阐述了其在植物抗旱、耐盐、耐冷等基因工程中的应用进展,为NAC转录因子的利用及植物抗逆遗传改良和育种提供参考。

关键词: 植物, NAC转录因子, 抗旱, 耐盐, 耐冷, 基因工程

Abstract:

In the process of growth and development, plants are subject to various abiotic stresses, which influence the growth and yield of plants. NAC transpription factors are plant-specific and one of the largest transcription factor families, which play an important role in regulation on plant growth and tolerance to abiotic stresses. This paper systematically and comprehensively elaborated the application of NAC transpription factors in plant drought, salt and cold tolerance genetic engineering from the aspects of resistance stages (reproductive stage, vegetative stage) and resistance ranges (comprehensive resistance, single resistance) of NAC transpription factors, so as to provide reference to the utilization of NAC transpription factors in genetic improvement abiotic tolerance, and molecular breeding of crops.

Key words: Plant, NAC transpription factors, Drought tolerance, Salt tolerance, Cold tolerance, Genetic engineering

[1] Nuruzzaman M, Manimekalai R, Sharoni A M , et al. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010,465(1/2):30-44.
doi: 10.1016/j.gene.2010.06.008 pmid: 20600702
[2] Shiriga K, Sharma R, Kumar K , et al. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene, 2014,2:407-417.
doi: 10.1016/j.mgene.2014.05.001
[3] Shang H, Li W, Zou C , et al. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.:Chromosomal location,structure,phylogeny,and expression patterns. Journal of Integrative Plant Biology, 2013,55(7):663-676.
doi: 10.1111/jipb.12085
[4] Liu T K, Song X M, Duan W K , et al. Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Molecular Biology Reporter, 2014,32(5):1041-1056
doi: 10.1007/s11105-014-0712-6
[5] Hao Y J, Wei W, Song Q X , et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 2011,68(2):302-313.
doi: 10.1111/j.1365-313X.2011.04687.x
[6] Kjaersgaard T, Jensen M K, Christiansen M W , et al. Senescence-associated barley NAC (NAM,ATAF1,2,CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. Journal of Biological Chemistry, 2011,286(41):35418-35429.
doi: 10.1074/jbc.M111.247221
[7] Yang S D, Seo P J, Yoon H K , et al. The Arabidopsis NAC transc ription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell, 2011,23(6):2155-2168.
doi: 10.1105/tpc.111.084913
[8] Zhong R, Lee C, Ye Z H . Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Molecular Plant, 2010,3(6):1087-1103.
doi: 10.1093/mp/ssq062 pmid: 20935069
[9] Nakashima K, Takasaki H, Mizoi J , et al. NAC transcription factors in plant abiotic stress responses.Biochimica et Biophysica Acta- Gene Regulatory Mechanisma, 2012,1819(2):97-103.
doi: 10.1016/j.bbagrm.2011.10.005 pmid: 22037288
[10] Tran L S, Nishiyama R, Yamaguchi-Shinozaki K , et al. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops, 2010,1(1):32-39.
doi: 10.4161/gmcr
[11] Xia N, Zhang G, Sun Y F , et al. TaNAC8,a novel NAC transcription factor gene in wheat,responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 2010,74(5/6):394-402.
doi: 10.1016/j.pmpp.2010.06.005
[12] Xia N, Zhang G, Liu X Y , et al. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports, 2010,37(8):3703-3712.
doi: 10.1007/s11033-010-0023-4
[13] Duval M, Hsieh T F, Kim S Y , et al. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology, 2002,50(2):237-248.
doi: 10.1023/A:1016028530943 pmid: 12175016
[14] Ooka H, Satoh K , Doi K,et al.Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.DNA Research,2003,10(6):239-247.
doi: 10.1093/dnares/10.6.239 pmid: 15029955
[15] Olsen A N, Ernst H A, Leggio L L , et al. NAC transcription factors:structurally distinct,functionally diverse. Trends Plant Science, 2005,10(2):79-87.
[16] Hu H, Dai M, Yao J , et al. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(35):12987-12992.
doi: 10.1073/pnas.0604882103
[17] Redillas M C, Jeong J S, Kim Y S , et al. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnology Journal, 2012,10(7):792-805.
doi: 10.1111/j.1467-7652.2012.00697.x
[18] Jeong J S, Kim Y S, Baek K H , et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 2010,153(1):185-197.
doi: 10.1104/pp.110.154773
[19] Jeong J S, Kim Y S, Redillas M C , et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnology Journal, 2013,11(1):101-114.
doi: 10.1111/pbi.12011
[20] Chen X, Wang Y, Lv B , et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant and Cell Physiology, 2014,55(3):604-619.
doi: 10.1093/pcp/pct204
[21] Fang Y, Liao K, Du H , et al. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany, 2015,66(21):6803-6817
doi: 10.1093/jxb/erv386
[22] Saad A S, Li X, Li H P, et al.A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses.Plant Science , 2013, 203- 204:33-40.
[23] Liu G, Li X, Jin S , et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One, 2014,9(1):e86895.
doi: 10.1371/journal.pone.0086895
[24] An X, Liao Y, Zhang J , et al. Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regulation, 2015,76(2):211-223.
doi: 10.1007/s10725-014-9991-z
[25] Takasaki H, Maruyama K, Kidokoro S , et al. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics, 2010,284(3):173-183.
doi: 10.1007/s00438-010-0557-0
[26] Tran L S P, Nakashima K, Sakuma Y , et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004,16(9):2481-2498.
doi: 10.1105/tpc.104.022699
[27] Lu P L, Chen N Z, An R , et al. A novel drought-inducible gene,ATAF1,encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Molecular Biology, 2007,63(2):289-305.
[28] Wu Y, Deng Z, Lai J , et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Research, 2009,19(11):1279-1290.
doi: 10.1038/cr.2009.108 pmid: 19752887
[29] Xu Z Y, Kim S Y , Hyeon do Y,et al.The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. The Plant Cell, 2013,25(11):4708-4724.
doi: 10.1105/tpc.113.119099
[30] Gao F, Xiong A, Peng R , et al. OsNAC52,a rice NAC transcription factor,potentially responds to ABA and confers drought tolerance in transgenic plants.Plant Cell, Tissue and Organ Culture, 2010,100(3):255-262.
doi: 10.1007/s11240-009-9640-9
[31] Lu M, Ying S, Zhang D F , et al. A maize stress-responsive NAC transcription factor,ZmSNAC1,confers enhanced tolerance to dehydrationin transgenic Arabidopsis. Plant Cell Reports, 2012,31(9):1701-1711.
doi: 10.1007/s00299-012-1284-2
[32] Mao H, Yu L, Han R , et al. ZmNAC55,a maize stress-responsive NAC transcription factor,confers drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016,105:55-66.
doi: 10.1016/j.plaphy.2016.04.018
[33] Mao H, Wang H, Liu S , et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 2015,6:8326.
doi: 10.1038/ncomms9326 pmid: 4595727
[34] Xue G P, Way H M, Richardson T , et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 2011,4(4):697-712.
doi: 10.1093/mp/ssr013
[35] Pandurangaiah M, Lokanadha R G, Sudhakarbabu O , et al. Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional
36 factor (MuNAC4) in groundnut confers enhanced drought tolerance. Molecular Biotechnology, 2014,56(8):758-769.
[36] Tang Y M, Liu M Y, Gao S Q , et al. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiologia Plantarum, 2012,114(3):210-224.
[37] Liu X, Liu S, Wu J , et al. Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiology and Biochemistry, 2013,70:354-359.
doi: 10.1016/j.plaphy.2013.05.018
[38] Lu M, Zhang D F, Shi Y S , et al. Expression of SbSNAC1,a NAC transcription factor from sorghum,confers drought tolerance to transgenic Arabidopsis.Plant Cell, Tissue and Organ Culture, 2013,115:443-455.
doi: 10.1007/s11240-013-0375-2
[39] Yu X, Peng H, Liu Y , et al. CarNAC2,a novel NAC transcription factor in chickpea (Cicer arietinum L.),is associated with drought-response and various developmental processes in transgenic Arabidopsis. Journal of Plant Biology, 2014,57(1):55-66.
doi: 10.1007/s12374-013-0457-z
[40] Yu X, Liu Y, Wang S , et al. A chickpea stress-responsive NAC transcription factor,CarNAC5,confers enhanced tolerance to drought stress in transgenic Arabidopsis. Plant Growth Regulation, 2016,79(2):187-197.
doi: 10.1007/s10725-015-0124-0
[41] Dai F, Zhang C, Jiang X , et al. RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rosepetals. Plant Physiology, 2012,160(4):2064-2082.
doi: 10.1104/pp.112.207720
[42] Jiang X, Zhang C, Lü P , et al. RhNAC3,a stress-associated NAC transcription factor,has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnology Journal, 2014,12(1):38-48.
doi: 10.1111/pbi.12114
[43] Yokotani N, Ichikawa T, Kondou Y , et al. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta, 2009,229(5):1065-1075.
doi: 10.1007/s00425-009-0895-5
[44] Sakuraba Y, Piao W, Lim J H , et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant and Cell Physiology, 2015,56(12):2325-2339.
doi: 10.1093/pcp/pcv144 pmid: 26443376
[45] Park J, Kim Y S, Kim S G , et al. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiology, 2011,156(2):537-549.
doi: 10.1104/pp.111.177071
[46] Zhong H, Guo Q Q, Chen L , et al. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Report, 2012,31(11):1991-2003.
doi: 10.1007/s00299-012-1311-3
[47] Liu Q L, Xu K D, Zhao L J , et al. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnology Letters, 2011,33(10):2073-2082.
doi: 10.1007/s10529-011-0659-8
[48] Wang J Y, Wang J P, He Y . A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana . Gene, 2013,521(2):265-273.
doi: 10.1016/j.gene.2013.03.068
[49] Han X, Feng Z, Xing D , et al. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis. BMC Plant Biology, 2015,15:208.
doi: 10.1186/s12870-015-0591-5
[50] Yoo S Y, Kim Y, Kim S Y , et al. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One, 2007,2(7):e642.
doi: 10.1371/journal.pone.0000642 pmid: 1920552
[51] Ma N N, Zuo Y Q, Liang X Q , et al. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiologia Plantarum, 2013,149(4):474-486.
doi: 10.1111/ppl.2013.149.issue-4
[52] Qu Y, Duan M, Zhang Z , et al. Overexpression of the Medicago falcata NAC transcription factor MfNAC3 enhances cold tolerance in Medicago truncatula. Environmental and Experimental Botany, 2016,129:67-76.
doi: 10.1016/j.envexpbot.2015.12.012
[53] Shahnejat-Bushehri S, Mueller-Roeber B, Balazadeh S . Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signaling & Behavior, 2012,7(12):1518-1521.
[54] Guan Q, Yue X, Zeng H , et al. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress responsive gene regulation and thermo tolerance in Arabidopsis. The Plant Cell, 2014,26(1):438-453.
doi: 10.1105/tpc.113.118927
[55] Yabuta Y, Osada R, Morishita T , et al. Involvement of Arabidopsis NAC transcription factor in the regulation of 20S and 26S proteasomes. Plant Science, 2011,181(4):421-427.
doi: 10.1016/j.plantsci.2011.07.001
[56] Ochiai K, Shimizu A, Okumoto Y , et al. Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice. Plant Physiology, 2011,156(3):1457-1463.
doi: 10.1104/pp.110.171470 pmid: 21543724
[57] Nakashima K, Tran L S, Van Nguyen D , et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal, 2007,51(4):617-630.
doi: 10.1111/j.1365-313X.2007.03168.x
[58] Zheng X, Chen B, Lu G , et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 2009,379(4):985-989.
doi: 10.1016/j.bbrc.2008.12.163 pmid: 19135985
[59] Hong Y, Zhang H, Huang L , et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science, 2016,7:4.
[60] Huang Q, Wang Y, Li B , et al. TaNAC29,a NAC transcription factor from wheat,enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biology, 2015,15:268.
doi: 10.1186/s12870-015-0644-9
[61] Zhu M, Chen G, Zhang J , et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports, 2014,33(11):1851-1863.
doi: 10.1007/s00299-014-1662-z
[62] Wang G, Zhang S, Ma X , et al. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum, 2016,158(1):45-64.
doi: 10.1111/ppl.2016.158.issue-1
[63] Liu X, Hong L, Li X Y , et al. Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Bioscience Biotechnology and Biochemistry, 2011,75(3):443-450.
doi: 10.1271/bbb.100614
[64] Ramegowda V, Senthil-Kumar M, Nataraja K N , et al. Expression of a finger millet transcription factor,EcNAC1,in tobacco confers abiotic stress-tolerance. PLoS One, 2012,7(7):e40397.
doi: 10.1371/journal.pone.0040397
[65] Movahedi A, Zhang J, Yin T , et al. Functional analysis of two orthologous NAC genes,CarNAC3,and CarNAC6 from Cicer arietinum,involved in abiotic stresses in poplar. Plant Molecular Biology Reporter, 2015,33:1539-1551.
doi: 10.1007/s11105-015-0855-0
[66] Yu X, Liu Y, Wang S , et al. CarNAC4,a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Reports, 2016,35(3):613-627.
doi: 10.1007/s00299-015-1907-5
[67] Yang X, Wang X, Ji L , et al. Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Reports, 2015,34(6):943-958.
doi: 10.1007/s00299-015-1756-2
[68] Zhao X, Yang X, Pei S , et al. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis. Gene, 2016,586(1):158-169.
doi: 10.1016/j.gene.2016.04.028
[69] Hu H, You J, Fang Y , et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 2008,67(1/2):169-181.
doi: 10.1007/s11103-010-9598-3 pmid: 18273684
[70] Mao X G, Zhang H Y, Qian X Y , et al. TaNAC2,a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 2012,63(8):2933-2946.
doi: 10.1093/jxb/err462
[71] Li X L, Yang X, Hu Y X , et al. A novel NAC transcription factor from Suaeda liaotungensis K.enhanced transgenic Arabidopsis drought,salt,and cold stress tolerance. Plant Cell Reports, 2014,33(5):767-778.
doi: 10.1007/s00299-014-1602-y
[72] Jin H, Huang F, Cheng H , et al. Overexpression of the GmNAC2 gene,an NAC transcription factor,reduces abiotic stress tolerance in tobacco. Plant Molecular Biology Reporter, 2013,31(2):435-442.
doi: 10.1007/s11105-012-0514-7
[1] 吴瑞香 杨建春 王利琴 郭秀娟. 应用多元分析法综合评价胡麻材料抗旱适应性[J]. 作物杂志, 2018, (5): 10–16
[2] 王丰丰 王 萍 陈 利 代彩玲 李书颉 张贺平. 基于植物学性状分析籽用南瓜的形态多样性[J]. 作物杂志, 2018, (5): 77–84
[3] 刘晨旦,张泽燕,张耀文. 不同基因型绿豆品种芽期抗旱性鉴定[J]. 作物杂志, 2018, (3): 77–83
[4] 熊伟姣,王亚伦,姚绍嫦,潘春柳,肖冬,王爱勤,何龙飞. MicroRNA在高等植物逆境响应中的作用机制研究进展[J]. 作物杂志, 2018, (1): 1–8
[5] 王曙光,史雨刚,史华伟,曹亚萍,孙黛珍. 春小麦光合特性与抗旱性的关系研究[J]. 作物杂志, 2017, (6): 23–29
[6] 卢楠楠,闫丽华,郑崇珂,尹海波,郭善利,谢先芝. 盐胁迫对水稻盐丰47和盐粳456生长和农艺性状的影响[J]. 作物杂志, 2017, (5): 106–111
[7] 李国龙,孙亚卿,邵世勤,张永丰. 甜菜幼苗叶片抗氧化系统对干旱胁迫的响应[J]. 作物杂志, 2017, (5): 73–79
[8] 郑秀玲,林静,信健,李灵晓,齐艳,陈敏. 同一种源地两种沙枣对NaCl胁迫的响应及耐盐阈值[J]. 作物杂志, 2017, (4): 143–149
[9] 郝曦煜,王红丹,尹智超,梁杰,尹凤祥,郝建军. PEG胁迫对小豆苗期抗旱生理指标的影响及抗旱鉴定体系建立[J]. 作物杂志, 2017, (4): 134–142
[10] 赵媛媛,张丽莉,石瑛. 马铃薯抗旱种质资源的筛选[J]. 作物杂志, 2017, (4): 72–77
[11] 郭瑞锋,张永福,任月梅,杨忠. 混合盐碱胁迫对谷子萌发、幼芽生长的影响及耐盐碱品种筛选[J]. 作物杂志, 2017, (4): 63–66
[12] 梁晓,祁永,吝亚杰,石一均,曹卫东,刘忠宽,刘桂霞. 应用综合指标法和灰色关联度法对10个紫花苜蓿品种进行耐盐性评价[J]. 作物杂志, 2017, (4): 44–49
[13] 吉雯雯,张泽燕,张耀文,孙黛珍. 不同地区小豆资源芽期抗旱性鉴定[J]. 作物杂志, 2017, (3): 54–59
[14] 赵振杰,梁太波,陈千思,胡利伟,张艳玲,尹启生. 碳纳米材料对植物生长发育的调节作用[J]. 作物杂志, 2017, (2): 7–13
[15] 徐畅,刘景辉,杨彦明,白雪,马斌,张兴隆,孙梦媛,张梦玉. 菌肥与氮磷肥配施对覆膜马铃薯抗旱生理指标及产量的影响[J]. 作物杂志, 2017, (1): 94–99
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .