作物杂志,2017, 第2期: 7–13 doi: 10.16035/j.issn.1001-7283.2017.02.002

• 专题综述 • 上一篇    下一篇

碳纳米材料对植物生长发育的调节作用

赵振杰,梁太波,陈千思,胡利伟,张艳玲,尹启生   

  1. 中国烟草总公司郑州烟草研究院/烟草行业生态环境与烟叶质量重点实验室,450001,河南郑州
  • 收稿日期:2016-12-05 修回日期:2017-01-04 出版日期:2017-04-15 发布日期:2018-08-26
  • 通讯作者: 梁太波,尹启生
  • 作者简介:赵振杰,硕士研究生,主要从事烟草栽培生理生化研究
  • 基金资助:
    国家科技支撑计划项目(2012BAC08B08);郑州烟草研究院科技项目(112013CZ0580)

The Growth and Development of Plants Regulated by Carbon Nano-Materials

Zhao Zhenjie,Liang Taibo,Chen Qiansi,Hu Liwei,Zhang Yanling,Yin Qisheng   

  1. Zhengzhou Tobacco Institute of CNTC/Key Laboratory of Eco-environment and Leaf Tobacco Quality,CNTC,Zhengzhou 450001,Henan,China
  • Received:2016-12-05 Revised:2017-01-04 Online:2017-04-15 Published:2018-08-26
  • Contact: Taibo Liang,Qisheng Yin

摘要:

碳纳米材料对植物生长发育的调节作用吸引着国内外众多科研工作者的注意力。碳纳米材料对植物的生长发育存在促进作用,表现为促进植物的种子萌发、根系生长以及生物量积累等,在农业上存在广阔的应用前景。然而,在一定条件下碳纳米材料对植物的生长发育也会产生负面效应,表现为组织损伤及生长抑制等,同时也存在一定的环境风险。本文结合近10年的研究,综述了调节植物生长发育相关的碳纳米材料种类及其对植物生长发育的影响、作用机制、安全性评价及研究进展,旨在为今后研究提供参考。

关键词: 碳纳米材料, 植物, 生长发育, 种子萌发, 作用机制

Abstract:

There has been great interest in potential of carbon nano-materials in regulating plant growth and development. Carbon nano-materials can promote the growth and development of plants. It can promote seed germination, root growth and biomass accumulation of some plants, which promise a wide application prospects in agriculture. However, carbon nano-materials also have negative effects on plant to some extent, such as tissue damage, growth inhibition, and it may create some environmental risks. In this paper, the types of carbon nano-materials, the effects of carbon nano-materials on the plant growth and development, the interaction mechanism and safety evaluation of plant production were reviewed. We also discussed the research progress, aiming to provide useful references for the in-depth research.

Key words: Carbon nano-materials, Plant, Growth and development of plants, Seed germination, Mechanism

表1

碳纳米材料刺激种子萌发"

碳纳米材料
Carbon nano-materials
浓度Concentration 影响Effect 文献
Reference
MWCNTs

0~50μg/mL

加快小麦、玉米、花生以及大蒜种子萌发进程,促进种子萌发时的水分吸收以及生物量积累。低 MWCNTs添加浓度条件下,随着其浓度的升高促进种子萌发效果明显。 [31]

MWCNTs
0~60mg/L,琼脂培养基
低浓度下,MWCNTs增强了玉米种子的发芽生长,提高了水分的吸收和生物量的积累以及Ca和Fe元素的吸收,高浓度下则出现抑制效应。 [30]
MWCNTs
0~100μg/mL,培养基
MWCNTs渗透到玉米、大豆和大麦种皮内部,促进种子的萌发进程,水通道基因的表达量增加。 [32]
Carbon nanotubes (CNTs) 10~40μg/mL,MS培养基 碳纳米管渗透进入番茄种皮内部,促进番茄种子吸水进而促进种子萌发。 [27]
SWCNHs
0~100μg/mL,MS培养基
SWCNHs刺激大麦、玉米、大豆、水稻、柳枝稷和番茄中特定作物种子的发芽,并增强玉米、番茄、水稻和大豆的不同器官的生长。 [8]
Oxidized MWCNTs
(OMWCNTs)
2.3~46.0μg/L
低浓度下OMWCNTs促进芥菜种子萌发、芽和根的生长,OMWCNTs有阻碍种子内部离子流失的效果。 [29]
Nano-carbon
0~396mg/L,MS培养基
6.6~66.0mg/L的范围内,种子增重显著,且随纳米碳浓度变化,种子吸水率与种子增重变化趋势基本一致,当浓度达到66.0mg/L时种子增重达到最大值。 [28]
[1] Angelucci R, Corticelli F, Cuffiani M , et al. Application of nanotechnologies in high energy physics.Nuclear Physics B -Proceedings Supplements, 2003,125(3):164-168.
doi: 10.1016/S0920-5632(03)90984-4
[2] 闫金定 . 我国纳米科学技术发展现状及战略思考.科学通报, 2015(1):30-37.
[3] Chiffre L D, Kunzmann H, Peggs G N , et al. Surfaces in precision engineering,microengineering and nanotechnology.CIRP Annals- Manufacturing Technology, 2003,52(2):561-577.
doi: 10.1016/S0007-8506(07)60204-2
[4] Borm P J, Robbins D, Haubold S , et al. The potential risks of nanomaterials:a review carried out for ECETOC. Particle and Fibre Toxicology, 2006,3(1):1-35.
doi: 10.1186/1743-8977-3-11 pmid: 1584248
[5] Dresselhaus M S, Dresselhaus G, Jorio A . Unusual properties and structure of carbon nanotubes. Annual Review of Materials Research, 2004,34(1):247-278.
doi: 10.1146/annurev.matsci.34.040203.114607
[6] 李朝阳, 杨胜香, 陈玲 , 等. 纳米材料改良土壤对小白菜吸收和富集重金属的影响.湖南农业科学, 2010(23):57-59,62.
doi: 10.3969/j.issn.1006-060X.2010.23.018
[7] 袁程飞, 谢伶俐, 陈帆 , 等. 碳纳米管在农业中的应用研究进展. 河南农业科学, 2016,45(2):7-10.
doi: 10.15933/j.cnki.1004-3268.2016.02.002
[8] Lahiani M H, Chen J, Irin F , et al. Interaction of carbon nanohorns with plants:uptake and biological effects. Carbon, 2015,81:607-619.
doi: 10.1016/j.carbon.2014.09.095
[9] Khot L R, Ehsani R, Sankaran S , et al. Applications of nanomaterials in agricultural production and crop protection:a review. Crop Protection, 2012,35(C):64-70.
doi: 10.1016/j.cropro.2012.01.007
[10] Bennett S W, Adeleye A, Ji Z , et al. Stability,metal leaching,photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Research, 2013,47(12):4074-4085.
doi: 10.1016/j.watres.2012.12.039
[11] Hurt R H, Monthioux M, Kane A . Toxicology of carbon nanomaterials:Status,trends,and perspectives on the special issue. Carbon, 2006,44(6):1028-1033.
doi: 10.1016/j.carbon.2005.12.023
[12] Srivastava V, Gusain D, Sharma Y C . Critical review on the toxicity of some widely used engineered nanoparticles. Industrial & Engineering Chemistry Research, 2015,54(24):6209-6233.
doi: 10.1021/acs.iecr.5b01610
[13] Iijima S . Helical microtubules of graphitic carbon. Nature, 1991,354(6348):56-58.
doi: 10.1038/354056a0
[14] 曹伟, 宋雪梅, 王波 , 等. 碳纳米管的研究进展. 材料导报, 2007,21(s1):77-82.
[15] 蔡慧中, 焦琛, 杨宏艳 , 等. 纳米洋葱碳国内外研究进展. 太原理工大学学报, 2016,47(3):275-283.
doi: 10.16355/j.cnki.issn1007-9432tyut.2016.03.001
[16] 邓顺柳, 谢素原 . 富勒烯合成化学研究进展. 化学进展, 2011,23(1):53-64.
[17] Miyawaki J, Yudasaka M, Azami T , et al. Toxicity of single-walled carbon nanohorns. ACS Nano, 2008,2(2):213-226.
doi: 10.1021/nn700185t pmid: 19206621
[18] Zhu S, Xu G . Single-walled carbon nanohorns and their applications. Nanoscale, 2010,2(12):2538-2549.
doi: 10.1039/c0nr00387e pmid: 20957266
[19] 魏韵天 . 水热法制备荧光碳点及其应用研究. 长春:吉林大学, 2015.
[20] Xu X, Ray R, Gu Y , et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 2004,126(40):12736-12737.
doi: 10.1021/ja040082h
[21] Saxena M, Maity S, Sarkar S . Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. Rsc Advances, 2014,4(75):39948-39954.
doi: 10.1039/c4ra06535b
[22] Monica R C, Cremonini R . Nanoparticles and higher plants. Caryologia, 2009,62(2):161-165.
doi: 10.1080/00087114.2004.10589681
[23] Martinelli V, Cellot G, Toma F M , et al. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Letters, 2012,12(4):1831-1838.
doi: 10.1021/nl204064s
[24] Donaldson K, Aitken R, Tran L , et al. Carbon nanotubes:a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicological Sciences, 2006,92(1):5-22.
doi: 10.1093/toxsci/kfj130
[25] Arnab M, Sanghamitra M, Servin A D , et al. Carbon nanomaterials in agriculture:a critical review. Frontiers in Plant Science, 2016,7:172.
doi: 10.3389/fpls.2016.00172 pmid: 4762280
[26] Begum P, Ikhtiari R, Fugetsu B . Graphene phytotoxicity in the seedling stage of cabbage,tomato,red spinach,and lettuce. Carbon, 2011,49(12):3907-3919.
doi: 10.1016/j.carbon.2011.05.029
[27] Khodakovskaya M, Dervishi E, Mahmood M , et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 2009,3(10):3221-3227.
doi: 10.1021/nn900887m
[28] 王佳奇, 李丽鹤, 孟令波 , 等. 纳米碳对玉米种子萌发及根系形态的影响.中国农学通报, 2013(18):62-66.
doi: 10.3969/j.issn.1000-6850.2013.18.012
[29] Mondal A, Basu R, Das S , et al. Beneficial role of carbon nanotubes on mustard plant growth:an agricultural prospect. Journal of Nanoparticle Research, 2011,13(10):4519-4528.
doi: 10.1007/s11051-011-0406-z
[30] Tiwari D K, Dasgupta-Schubert N , Cendejas L M V,et al.Interfacing carbon nanotubes (CNT) with plants:enhancement of growth,water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience, 2014,4(5):577-591.
doi: 10.1007/s13204-013-0236-7
[31] Rao D P, Srivastava A . Enhancement of seed germination and plant growth of wheat,maize,peanut and garlic using multiwalled carbon nanotubes. European Chemical Bulletin, 2014,3(5):502-504.
[32] Lahiani M H, Dervishi E, Chen J , et al. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Applied Materials & Interfaces, 2013,5(16):195-205.
doi: 10.1021/am402052x pmid: 23834323
[33] Wang X, Han H, Liu X , et al. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. Journal of Nanoparticle Research, 2012,14(6):1-10.
doi: 10.1007/s11051-012-0841-5
[34] Khodakovskaya M V, Kim B S, Kim J N , et al. Carbon nanotubes as plant growth regulators:effects on tomato growth,reproductive system,and soil microbial community. Small, 2013,9(1):115-123.
doi: 10.1002/smll.v9.1
[35] 姜余梅, 刘强, 赵怡情 , 等. 碳纳米管对水稻种子萌发和根系生长的影响.湖北农业科学, 2014(5):1010-1012.
[36] Kole C, Kole P, Randunu K M , et al. Nanobiotechnology can boost crop production and quality:first evidence from increased plant biomass,fruit yield and phytomedicine content in bitter melon (Momordica charantia). Bmc Biotechnology, 2013,37(13):1472-1482.
[37] Liu Q, Zhao Y, Wan Y , et al. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano, 2010,4(10):5743-5748.
doi: 10.1021/nn101430g pmid: 20925388
[38] 李淑敏, 马辰, 李丽鹤 , 等. 纳米碳对玉米氮素吸收及根系活力和土壤酶活性的影响.东北农业大学学报, 2014(7):14-18.
[39] 梁太波, 尹启生, 张艳玲 , 等. 施用纳米碳对烤烟氮素吸收和利用的影响. 生态学报, 2014,34(6):1429-1435.
doi: 10.5846/stxb201210231469
[40] 王小燕, 王燚, 田小海 , 等. 纳米碳增效尿素对水稻田面水氮素流失及氮肥利用率的影响. 农业工程学报, 2011,27(1):106-111.
doi: 10.3969/j.issn.1002-6819.2011.01.016
[41] 李淑敏, 韩晓光, 张爱媛 , 等. 不同尿素添加纳米碳增效剂对大豆干物质积累和产量的影响.东北农业大学学报, 2015(4):10-16.
[42] Stampoulis D, Sinha S K, White J C . Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 2009,43(24):9473-9479.
doi: 10.1021/es901695c pmid: 19924897
[43] Anjum N A, Singh N, Singh M K , et al. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). Journal of Nanoparticle Research, 2013,15(7):1-12.
[44] Avanasi R, Jackson W A, Sherwin B , et al. C60 fullerene soil sorption,biodegradation,and plant uptake. Environmental Science & Technology, 2014,48(5):2792-2797.
doi: 10.1021/es405306w pmid: 24521447
[45] Tan X M, Fugetsu B . Multi-walled carbon nanotubes interact with cultured rice cells:evidence of a self-defense response. Journal of Biomedical Nanotechnology, 2007,3(3):285-288.
doi: 10.1166/jbn.2007.035
[46] Lin C, Fugetsu B, Su Y , et al. Studies on toxicity of multi-walled carbon nanotubes on arabidopsis T87 suspension cells. Journal of Hazardous Materials, 2009,170(2-3):578-583.
doi: 10.1016/j.jhazmat.2009.05.025 pmid: 19505757
[47] Lin D, Xing B . Phytotoxicity of nanoparticles:Inhibition of seed germination and root growth. Environmental Pollution, 2007,150(2):243-250.
doi: 10.1016/j.envpol.2007.01.016 pmid: 17374428
[48] 吕继涛, 张淑贞 . 人工纳米材料与植物的相互作用:植物毒性、吸收和传输. 化学进展, 2013,1(1):156-163.
doi: 10.7536/pc120622
[49] Cañas J E, Long M, Nations S , et al. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 2008,27(9):1922-1931.
doi: 10.1897/08-117.1
[50] Khodakovskaya M V, Silva D K, Biris A S , et al. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 2012,6(3):2128-2135.
doi: 10.1021/nn204643g pmid: 22360840
[51] Shen C X, Yao N . Induction of programmed cell death in arabidopsis and rice by single-wall carbon nanotubes. American Journal of Botany, 2010,97(10):1602-1609.
doi: 10.3732/ajb.1000073
[52] 赵官成, 梁健, 淡静雅 , 等. 土壤微生物与植物关系研究进展.西南林业大学学报, 2011(1):83-88.
[53] 曹际玲, 冯有智, 林先贵 . 人工纳米材料对植物-微生物影响的研究进展. 土壤学报, 2016,53(1):1-11.
doi: 10.11766/trxb201506110191
[54] Liu Q, Chen B, Wang Q , et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters, 2009,9(3):1007-1010.
doi: 10.1021/nl803083u pmid: 19191500
[55] Tripathi S, Sonkar S K, Sarkar S . Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale, 2011,3(3):1176-1181.
doi: 10.1039/c0nr00722f pmid: 21253651
[56] Wild E, Jones K C . Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environmental Science & Technology, 2009,43(14):5290-5294.
[57] Rico C M, Majumdar S, Duartegardea M , et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural & Food Chemistry, 2011,59(8):3485-3498.
[58] 杨健, 梁太波, 李海江 , 等. 纳米碳溶胶对烤烟根系生理特性及钾吸收的影响.烟草科技, 2015(1):7-11.
doi: 10.16135/j.issn1002-0861.20150102
[59] Lu F, Gu L, Meziani M J , et al. Advances in bioapplications of carbon nanotubes. Advanced Materials, 2009,21(2):139-152.
doi: 10.1002/adma.200801491
[60] 岳芳宁, 罗水明, 张承东 . 人工碳纳米材料在环境中的降解与转化研究进展. 应用生态学报, 2013,24(2):589-596.
[61] Jackson P, Jacobsen N R, Baun A , et al. Bioaccumulation and ecotoxicity of carbon nanotubes. Chemistry Central Journal, 2013,7(1):1-21.
doi: 10.1186/1752-153X-7-1
[62] Kerfahi D, Tripathi B M, Singh D , et al. Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition. Plos One, 2015,10(3):e0123042.
doi: 10.1371/journal.pone.0123042
[63] Srinivasan C, Saraswathi R . Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Current Science, 2010,99(3):274-275.
doi: 10.1371/journal.pone.0012103
[1] 王丰丰 王 萍 陈 利 代彩玲 李书颉 张贺平. 基于植物学性状分析籽用南瓜的形态多样性[J]. 作物杂志, 2018, (5): 77–84
[2] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121–125
[3] 熊伟姣,王亚伦,姚绍嫦,潘春柳,肖冬,王爱勤,何龙飞. MicroRNA在高等植物逆境响应中的作用机制研究进展[J]. 作物杂志, 2018, (1): 1–8
[4] 王传旗,徐雅梅,梁莎,沈振西,余成群,张尚雄,张卫红,王小川,苗彦军. 西藏野生老芒麦种子萌发对温度和水分的响应[J]. 作物杂志, 2017, (6): 165–169
[5] 王文浩,郑洪元,刘文俊,何丽芬,闫玉星. 外源NO对向日葵种子萌发和幼苗生长的影响[J]. 作物杂志, 2017, (4): 169–172
[6] 田艺心,高凤菊. 高蛋白大豆生长发育及干物质积累分配对密度的响应研究[J]. 作物杂志, 2017, (2): 121–125
[7] 段俊枝,李莹,赵明忠,李清州,张莉,魏小春,任银铃. NAC转录因子在植物抗非生物胁迫基因工程中的应用进展[J]. 作物杂志, 2017, (2): 14–22
[8] 张紫薇,庞春花,张永清,倪瑞军,杨世芳,王璐瑗,刘丽琴. 等渗NaCl和PEG胁迫及复水处理对藜麦种子萌发及幼苗生长的影响[J]. 作物杂志, 2017, (1): 119–126
[9] 罗昊文,孔雷蕾,钟卓君,谢萝雅,赵旭生,林子秋,唐湘如. 淹水胁迫对水稻玉香油占秧苗生长和生理特性的影响[J]. 作物杂志, 2017, (1): 135–139
[10] 余永廷,高春生,李智敏,曾粮斌,陈佳,朱爱国,朱涛涛,孙凯,严准. Phytocystatin在植物抗病虫中的作用及表达调控[J]. 作物杂志, 2016, (6): 9–15
[11] 高志勇,谢恒星,王志平,刘史力. 植物突变体库的作用及构建研究进展[J]. 作物杂志, 2016, (6): 16–19
[12] 张坤,吕伟生,段里成,胡水秀,曾勇军,潘晓华,石庆华. 机插对晚稻栽后秧苗生长和生育期的影响[J]. 作物杂志, 2016, (5): 112–118
[13] 柏祥,塔莉,赵美微,刘传才,魏国印,崔力拓,曾广娟,秦津. 外来入侵植物反枝苋的最新研究进展[J]. 作物杂志, 2016, (4): 7–14
[14] 王绍敏,国淑梅,牛贞福,张鹤. 45%烯肟菌胺·苯醚甲环唑·噻虫嗪悬浮种衣剂对冬小麦生长发育的影响和主要病虫害的防控研究[J]. 作物杂志, 2016, (4): 167–171
[15] 左应梅,杨维泽,杨天梅,杨美权,许宗亮,杨绍兵,张金渝. 干旱胁迫下4种人参属植物抗性生理指标的比较[J]. 作物杂志, 2016, (3): 84–88
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .