作物杂志,2022, 第2期: 174–181 doi: 10.16035/j.issn.1001-7283.2022.02.024

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

氮磷钾复合肥与促生菌Bacillus sp. KTS-1-1配施对太子参生理特性、生物量及品质的影响

焦松林(), 任建国, 欧阳湖, 倪显春, 田茂松, 王俊丽()   

  1. 贵州医科大学公共卫生学院/环境污染与疾病监控教育部重点实验室/贵州省食品营养与健康工程研究中心,550025,贵州贵阳
  • 收稿日期:2021-05-07 修回日期:2021-07-22 出版日期:2022-04-15 发布日期:2022-04-24
  • 通讯作者: 王俊丽
  • 作者简介:焦松林,主要从事环境功能性微生物研究,E-mail: 1542849350@qq.com
  • 基金资助:
    国家自然科学基金(31760604);贵州省区域内一流学科建设项目—公共卫生与预防医学(黔教科研发2017[85]号);贵州省高等学校工程研究中心项目(黔教合KY字[2021]008)

Effects of Combined Application of Nitrogen, Phosphorus, and Potassium Compound Fertilizer and Bacillus sp. KTS-1-1 on Physiological Characteristics, Biomass and Quality of Pseudostellaria heterophylla

Jiao Songlin(), Ren Jianguo, Ouyang Hu, Ni Xianchun, Tian Maosong, Wang Junli()   

  1. School of Public Health, Guizhou Medical University/Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education/Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang 550025, Guizhou, China
  • Received:2021-05-07 Revised:2021-07-22 Online:2022-04-15 Published:2022-04-24
  • Contact: Wang Junli

摘要:

以太子参品种‘三泓1号’为材料进行盆栽试验,设置CK(自来水)、T1(2.00g氮磷钾复合肥水溶液)、T2(3×108CFU/mL促生菌KTS-1-1菌悬液)、T3(0.25g氮磷钾复合肥+3×108CFU/mL促生菌KTS-1-1菌悬液)、T4(0.50g氮磷钾复合肥+3×108CFU/mL促生菌KTS-1-1菌悬液)和T5(1.00g氮磷钾复合肥+3×108CFU/mL促生菌KTS-1-1菌悬液)6个处理,探究不同比例的氮磷钾复合肥与促生菌KTS-1-1配施对太子参生理特性、生物量及品质的影响。结果表明,相比CK处理,T2、T3、T4处理均能显著改善叶片中营养元素含量和防御酶活性,提高植株生物量,增加块根多糖、氨基酸、钙和钴元素含量,尤以T4处理最为明显,与CK处理相比,叶片氮、磷、钾含量分别显著提高了82.14%、54.55%和94.16%;叶片超氧化物歧化酶、苯丙氨基酸解氨酶和过氧化物酶活性分别显著提高了50.20%、19.72%和40.24%;株高、平均叶面积、块根鲜重及块根干重分别显著提高了10.20%、28.05%、70.62%和54.95%;块根多糖、氨基酸及钙、钴元素含量分别显著提高了35.38%、68.14%、29.17%和21.56%。与T1处理相比,T4处理在叶片营养元素含量、叶片防御酶活性及块根生物量方面也有明显的促进作用。综上说明,T4处理为太子参生产中肥料使用的推荐方式。

关键词: 氮磷钾复合肥, 植物根际促生菌, 太子参, 生物量, 品质

Abstract:

In order to explore the effects of different ratios of NPK compound fertilizer combined with Bacillus sp. KTS-1-1 bacterial suspension on the physiological characteristics, biomass and quality of Pseudostellaria heterophylla, this study used P. heterophylla ‘Sanhong No.1’ as the material for pot experiment. The experiments including six treatments were designed as followings: CK (tap water), T1 (2.00g NPK compound fertilizer tap water solution), T2 (3×108 CFU/mL Bacillus sp. KTS-1-1 bacterial suspension), T3 (0.25g of NPK compound fertilizer+3×108 CFU/mL Bacillus sp. KTS-1-1 bacterial suspension), T4 (0.50g of NPK compound fertilizer+3×108 CFU/mL Bacillus sp. KTS-1-1 bacterial suspension), T5 (1.00g of NPK compound fertilizer+3×108 CFU/mL Bacillus sp. KTS-1-1 bacterial suspension). The results showed that, compared with CK treatment, T2, T3, and T4 treatments could significantly improve leaf nutrient element content and leaf defense enzyme activity, increase biomass and the contents of polysaccharide, amino acid, calcium and cobalt in roots, especially for T4 treatment being the most obvious one in the promoting effect. Compared with CK treatment, the contents of nitrogen, phosphorus, and potassium in leaves significantly increased by 82.14%, 54.55% and 94.16% respectively, the activities of SOD, PAL and POD in leaves by 50.20%, 19.72% and 40.24% respectively, plant height, average leaf area, fresh root weight, and dry root weight by 10.20%, 28.05%, 70.62% and 54.95%, respectively and the contents of polysaccharides, amino acids, calcium, and cobalt in tuber roots by 35.38%, 68.14%, 29.17% and 21.56% respectively were observed in T4 treatment. Additionally, compared with T1 treatment, T4 treatment also had the significant promoting effects on leaf nutrient element contents, leaf defense enzyme activities and root biomass. In summary, T4 was the recommended method of fertilizer application in the production of P. heterophylla.

Key words: NPK compound fertilizer, Plant growth promoting rhizobacteria, Pseudostellariae heterophylla, Biomass, Quality

表1

氮磷钾复合肥与促生菌KTS-1-1(3×108 CFU/mL)施用方案设计

处理
Treatment
组分Component 总体积
Total volume (mL)
KTS-1-1 (mL) 氮磷钾复合肥NPK compound fertilizer (g) 自来水Tap water (mL)
CK 0 0.00 200 200
T1 0 2.00 200 200
T2 200 0.00 0 200
T3 200 0.25 0 200
T4 200 0.50 0 200
T5 200 1.00 0 200

图1

氮磷钾复合肥与促生菌KTS-1-1施用对太子参叶片营养元素含量的影响 不同小写字母表示不同处理在P<0.05 水平差异显著,下同

图2

氮磷钾复合肥与促生菌KTS-1-1施用对太子参叶片防御酶活性的影响

图3

氮磷钾复合肥与促生菌KTS-1-1施用对太子参叶片防御酶活性的聚类分析

表2

氮磷钾复合肥与促生菌KTS-1-1施用对太子参生物量的影响

处理
Treatment
株高
Plant height (cm)
平均叶面积
Average leaf area (cm2)
块根鲜重
Fresh root weight (g)
块根干重
Root dry weight (g)
CK 15.88±0.26b 4.42±0.18c 18.38±0.44e 5.55±0.23e
T1 17.23±0.20a 5.36±0.20ab 29.08±0.54b 7.79±0.34b
T2 17.35±0.28a 5.25±0.19b 22.55±0.60d 6.53±0.26d
T3 17.98±0.29a 5.98±0.19a 26.88±0.52c 7.49±0.25bc
T4 17.50±0.25a 5.66±0.20ab 31.36±0.58a 8.60±0.19a
T5 17.02±0.33a 5.60±0.13ab 23.64±0.73d 6.84±0.24cd

表3

氮磷钾复合肥与促生菌KTS-1-1施用对块根多糖、皂苷及氨基酸含量的影响

处理Treatment 多糖Polysaccharide (%) 皂苷Saponin (%) 氨基酸Amino acid (μmol/g)
CK 5.37±0.08c 1.37±0.01ab 45.92±4.45c
T1 6.69±0.32b 1.36±0.02ab 115.31±5.40a
T2 5.62±0.14c 1.38±0.03ab 60.20±6.56bc
T3 8.22±0.38a 1.30±0.03b 74.49±3.58b
T4 7.27±0.04b 1.33±0.03b 77.21±3.35b
T5 7.31±0.33b 1.49±0.05a 52.72±5.01c

表4

氮磷钾复合肥与促生菌KTS-1-1施用对太子参块根矿质元素含量的影响

处理Treatment 钙Calcium 镁Magnesium 铁Iron 锰Manganese 铜Copper 锌Zinc 钴Cobalt
CK 1 636.47±25.58b 1 020.84±13.54b 412.70±6.20a 97.47±4.44a 5.69±0.01a 30.59±1.13a 8.72±0.29c
T1 2 005.71±56.72a 1 076.05±9.44ab 407.95±7.29a 88.44±6.85a 6.66±0.48a 30.99±2.78a 10.11±0.24ab
T2 2 163.77±40.41a 1 116.01±26.50a 424.97±8.94a 92.75±2.83a 7.03±0.40a 31.41±1.93a 9.53±0.30b
T3 2 036.75±39.31a 1 062.97±27.69ab 430.02±3.27a 87.45±4.38a 5.86±0.41a 30.40±0.84a 10.45±0.23a
T4 2 113.75±45.46a 1 047.31±19.22ab 414.48±10.32a 95.93±4.16a 6.13±0.16a 30.96±1.27a 10.60±0.14a
T5 2 151.75±40.14a 1 079.30±14.58ab 408.35±7.98a 89.15±3.47a 6.00±0.15a 31.39±1.82a 11.04±0.05a
[1] Gyaneshwar P, Kumar G N, Parekh L J, et al. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 2002, 245(1):83-93.
doi: 10.1023/A:1020663916259
[2] Gupat G, Parihar S S, Ahirwar N K, et al. Plant growth promoting rhizobacteria (PGPR):current and future prospects for development of sustainable agriculture. Journal of Microbial and Biochemical Technology, 2015, 7(2):96-102.
[3] Vejan P, Abdullah R, Khadiran T, et al. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules, 2016, 21(5):573-589.
doi: 10.3390/molecules21050573
[4] Gouda S, Kerry R G, Das G, et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 2018, 206:131-140.
doi: 10.1016/j.micres.2017.08.016
[5] Habibi S, Djedidi S, Ohkama-Ohtsu N, et al. Isolation and screening of indigenous plant growth-promoting rhizobacteria from different rice cultivars in Afghanistan soils. Microbes and Environments, 2019, 34(4):347-355.
doi: 10.1264/jsme2.ME18168
[6] 娄义, 郭俏, 彭楚, 等. 3株芽孢杆菌对番茄的促生作用及对番茄根域微生物的影响. 应用生态学报, 2018, 29(1):260-268.
[7] 朱忠彬, 吴秉奇, 丁延芹, 等. 短短芽孢杆菌 DZQ3对烟草的促生及系统抗性诱导作用. 中国烟草科学, 2012, 33(3):92-96.
[8] 宋叶, 林东, 梅全喜, 等. 太子参化学成分及药理作用研究进展. 中国药师, 2019, 22(8):1506-1510.
[9] Guo R, Wei W, Wang Y L, et al. Protective effects of Radix Pseudostellariae extract against retinal laser injury. Cellular Physiology and Biochemistry, 2014, 33(6):1643-1653.
doi: 10.1159/000362947 pmid: 24902809
[10] Fang Z, Duan X, Zhao J, et al. Novel polysaccharide H-2 from Pseudostellaria heterophylla alleviates type 2 diabetes mellitus. Cellular Physiology and Biochemistry, 2018, 49(3):1037-1047.
doi: 10.1159/000493284
[11] 荣良燕, 姚拓, 马文彬, 等. 岷山红三叶根际优良促生菌对其宿主生长和品质的影响. 草业学报, 2014, 23(5):231-240.
[12] Molla A H, Haque M M, Haque M A, et al. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agricultural Research, 2012, 1(3):265-272.
doi: 10.1007/s40003-012-0025-7
[13] 任建国, 王俊丽. 太子参土壤固氮菌与解钾菌的分离、筛选及鉴定. 西南师范大学学报(自然科学版), 2015, 40(2):59-65.
[14] 秦民坚, 余永邦, 黄文哲, 等. 不同产地太子参的品质分析. 现代中药研究与实践, 2005, 19(5):29-32.
[15] 林茂, 郑炯, 杨琳, 等. 不同产地太子参中化学成分分析. 食品科学, 2012, 33(2):204-207.
[16] Liu D, Yang Q, Ge K, et al. Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Brazilian Journal of Microbiology, 2017, 48(4):656-670.
doi: S1517-8382(16)30635-9 pmid: 28645648
[17] Zahid M, Abbasi M K, Hameed S, et al. Isolation and identification of indigenous plant growth promoting rhizobacteria from himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in Microbiology, 2015, 6:207-216.
[18] Rais A, Jabeen Z, Shair F, et al. Bacillus spp.,a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS ONE, 2017, 12(11):187412-187428.
[19] Shaharoona B, Naveed M, Arshad M, et al. Fertilizer-dependent efficiency of Pseudomonads for improving growth,yield,and nutrient use efficiency of wheat (Triticum aestivum L.). Applied Microbiology and Biotechnology, 2008, 79(1):147-155.
doi: 10.1007/s00253-008-1419-0 pmid: 18340443
[20] 李瑞霞.贵州木霉NJAU4742对矿质元素的活化及对番茄的促生效果研究. 南京:南京农业大学, 2016.
[21] Karlidag H, Esitken A, Turan M, et al. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield,growth and nutrient element contents of leaves of apple. Scientia Horticulturae, 2007, 114(1):16-20.
doi: 10.1016/j.scienta.2007.04.013
[22] Miransari M. Soil microbes and the availability of soil nutrients. Acta Physiologiae Plantarum, 2013, 35(11):3075-3084.
doi: 10.1007/s11738-013-1338-2
[23] Yildirim E, Karlidag H, Turan M, et al. Growth,nutrient uptake,and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. HortScience, 2011, 46(6):932-936.
doi: 10.21273/HORTSCI.46.6.932
[24] Zhao Q, Wu Y N, Fan Q, et al. Improved growth and metabolite accumulation in Codonopsis pilosula (Franch.) Nannf. by inoculation of Bacillus amyloliquefaciens GB03. Journal of Agricultural and Food Chemistry, 2016, 64(43):8103-8108.
pmid: 27723315
[25] 李文倩, 张莹, 王梦茹, 等. 不同施肥配比对蒙古黄芪产量及品质的影响. 草地学报, 2020, 28(1):221-229.
[26] Anthony P, Malzer G, Sparrow S, et al. Soybean yield and quality in relation to soil properties. Agronomy Journal, 2012, 104(5):1443-1458.
doi: 10.2134/agronj2012.0095
[27] Vessey J K. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 2003, 255(2):571-586.
doi: 10.1023/A:1026037216893
[28] De-Bashan L E, Hernandez J P, Bashan Y. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation-a comprehensive evaluation. Applied Soil Ecology, 2012, 61:171-189.
doi: 10.1016/j.apsoil.2011.09.003
[29] Liu F C, Xing S J, Ma H L, et al. Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings. Applied Microbiology and Biotechnology, 2013, 97(10):4617-4625.
doi: 10.1007/s00253-012-4255-1
[30] 栾换换. 促生菌与氮和磷配施对红小豆生长发育的影响. 临汾:山西师范大学, 2018.
[31] 张朝辉. PGPR菌肥在烤烟漂浮育苗及烤烟生产中的应用研究. 郑州:河南农业大学, 2010.
[32] Akbari P, Ghalavand A, Sanavy A M M, et al. Comparison of different nutritional levels and the effect of plant growth promoting rhizobacteria (PGPR) on the grain yield and quality of sunflower. Australian Journal of Crop Science, 2011, 5(12):1570-1576.
[33] Nascente A S, Lanna A C, De Sousa T P, et al. N fertilizer dose-dependent efficiency of Serratia spp. for improving growth and yield of upland rice (Oryza sativa L.). International Journal of Plant Production, 2019, 13(3):217-226.
doi: 10.1007/s42106-019-00049-5
[34] Chen X, Wang J, Wang Z, et al. Optimized nitrogen fertilizer application mode increased culms lignin accumulation and lodging resistance in culms of winter wheat. Field Crops Research, 2018, 228:31-38.
doi: 10.1016/j.fcr.2018.08.019
[35] Shin R, Berg R H, Schachtman D P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen,phosphorus and potassium deficiency. Plant and Cell Physiology, 2005, 46(8):1350-1357.
doi: 10.1093/pcp/pci145
[36] Kováčik J, Bačkor M. Changes of phenolic metabolism and oxidative status in nitrogen-deficient Matricaria chamomilla plants. Plant and Soil, 2007, 297(1):255-265.
doi: 10.1007/s11104-007-9346-x
[1] 郝瑞煊, 孙敏, 任爱霞, 林文, 王培如, 韩旭阳, 王强, 高志强. 宽幅条播冬小麦水分利用与干物质积累、品质的关系及播种密度的调控研究[J]. 作物杂志, 2022, (2): 119–126
[2] 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 追氮量对不同品质类型小麦产量及光合性能的影响[J]. 作物杂志, 2022, (2): 134–142
[3] 陆丹丹, 叶苗, 张祖建. 稻米蛋白质及其组分研究概况及其对稻米品质的影响[J]. 作物杂志, 2022, (2): 28–34
[4] 赵利蓉, 马珂, 张丽光, 汤沙, 原向阳, 刁现民. 不同生态区谷子品种农艺性状和品质分析[J]. 作物杂志, 2022, (2): 44–53
[5] 石雄高, 裴雪霞, 党建友, 张定一. 小麦微喷(滴)灌水肥一体化高产优质高效生态栽培研究进展[J]. 作物杂志, 2022, (1): 1–10
[6] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[7] 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137–141
[8] 柏军兵, 王艳杰, 王德梅, 杨玉双, 王玉娇, 郭丹丹, 刘哲文, 常旭虹, 石书兵, 赵广才. 强筋小麦产量和品质对不同土壤条件及施氮水平的响应[J]. 作物杂志, 2022, (1): 167–173
[9] 李润卿, 申勇, 朱宽宇, 王志琴, 杨建昌. 施氮量对超级稻南粳9108产量、淀粉RVA谱特征值和理化特性的影响[J]. 作物杂志, 2022, (1): 205–212
[10] 冯素芬, 刘元剑, 许蕊淇, 张薇. 云南省近年审定鲜食玉米品种的主要性状分析[J]. 作物杂志, 2022, (1): 220–226
[11] 张胜全, 叶志杰, 任立平, 高新欢, 王拯, 杨永利, 穆磊, 董艳华, 陈兆波. “十五”以来我国杂交小麦审定品种分析[J]. 作物杂志, 2022, (1): 38–43
[12] 高凤云, 斯钦巴特尔, 周宇, 贾霄云, 苏少锋, 赵小庆, 金晓蕾. 基于SSR标记的胡麻粗脂肪及脂肪酸组分的关联分析[J]. 作物杂志, 2022, (1): 44–49
[13] 宋全昊, 金艳, 宋佳静, 白冬, 赵立尚, 陈杰, 朱统泉. 人工合成六倍体小麦在黄淮麦区育种中的利用性评价[J]. 作物杂志, 2022, (1): 56–64
[14] 周乾聪, 陈乐, 罗亢, 刘梦洁, 宋永苹, 谢小兵, 曾勇军. 氮素穗肥运筹方式对杂交晚粳稻产量和品质的影响[J]. 作物杂志, 2021, (6): 129–133
[15] 郭明明, 王康君, 张广旭, 孙中伟, 李筠, 章跃树, 代丹丹, 陈凤, 樊继伟. 播期和行距互作对小麦籽粒产量和品质的调控[J]. 作物杂志, 2021, (6): 152–158
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!