作物杂志,2022, 第1期: 1–10 doi: 10.16035/j.issn.1001-7283.2022.01.001

• 专题综述 •    下一篇

小麦微喷(滴)灌水肥一体化高产优质高效生态栽培研究进展

石雄高1,3(), 裴雪霞2(), 党建友2, 张定一2   

  1. 1山西农业大学农学院,030801,山西晋中
    2山西农业大学小麦研究所,041000,山西临汾
    3贺州学院党委办公室,542899,广西贺州
  • 收稿日期:2021-06-23 修回日期:2021-08-17 出版日期:2022-02-15 发布日期:2022-02-16
  • 通讯作者: 裴雪霞
  • 作者简介:石雄高,主要从事小麦、玉米水肥一体化高产高效栽培研究,E-mail: 1778719408@qq.com
  • 基金资助:
    山西省重点研发计划(201903D221022);国家现代农业产业技术体系建设专项(CARS-03-2-7)

Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation

Shi Xionggao1,3(), Pei Xuexia2(), Dang Jianyou2, Zhang Dingyi2   

  1. 1College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
    2Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, Shanxi, China
    3Party Office, Hezhou University, Hezhou 542899, Guangxi, China
  • Received:2021-06-23 Revised:2021-08-17 Online:2022-02-15 Published:2022-02-16
  • Contact: Pei Xuexia

摘要:

高产优质高效生态栽培是现代农业的发展目标,水肥一体化技术是实现这一目标的有效手段,其为国家粮食安全和农业可持续发展做出了重要贡献。微喷(滴)灌水肥一体化技术在小麦栽培上可实现节水30%~40%、节肥20%~30%以及增产15%~30%,水分和肥料利用率分别提高40%~60%和30%~50%;同时可改善小麦籽粒品质,减少100cm以下土层NO3--N积累,降低氮肥淋失风险,以及缓解土壤中N2O气体向大气排放。本文概述了水肥一体化技术及国内外发展现状,并对微喷(滴)灌水肥一体化技术对小麦产量、品质、水肥利用率及水肥运移规律、N2O气体排放等方面的影响进行综述,为水肥一体化技术从“高端农业”走向普遍、从设施农业走向大田提供参考。

关键词: 水肥一体化, 小麦, 产量和品质, 水肥高效, 水肥运移, N2O排放

Abstract:

High-yield, high-quality, high-efficiency and ecology cultivation is the development goal of modern agriculture, and fertigation technology is an effective method to achieve this goal, it has made important contributions to national food security and sustainable agricultural development. In wheat cultivation, micro-sprinkling and drip fertigation technology can achieve water saving of 30%-40%, fertilizer saving of 20%-30%, yield increasing of 15%-30%, improve water and fertilizer utilization rate of 40%-60% and 30%-50%, respectively. At the same time, it can upgrade the grain quality of wheat, diminish the accumulation of NO3--N in the soil layer below 100cm, reduce the risk of nitrogen leaching, and alleviate the N2O emission from the soil to the atmosphere. In this thesis, fertigation technology and its development current status in global were summarized, and the effects of micro-sprinkling and drip fertigation technology on wheat yield and quality, water and fertilizer utilization rate and migration law, N2O gas emission were reviewed. This review provide a theoretical reference for it from “High-End Agriculture” to universal, and from facility agriculture to field.

Key words: Fertigation, Wheat, Yield and quality, High-efficiency of water and fertilizer, Migration of water and fertilizer, N2O emission

表1

2015-2019年我国农业生产中水资源和化肥使用情况

年份
Year
农业用水量
Agricultural water
consumption
(×108 m3)
农业化肥用量
Agricultural fertilizer consumption (×104 t)
氮肥
Nitrogen
磷肥
Phosphorus
钾肥
Potassium
2015 3852.2 2361.57 843.06 642.28
2016 3768.0 2310.46 829.99 636.90
2017 3766.4 2221.81 797.59 619.74
2018 3693.1 2065.43 728.88 590.28
2019 3682.3 1930.21 681.58 561.13

表2

水肥一体化技术和农民传统灌水施肥模式在我国小麦栽培上生产效益的比较

灌水施肥方式
Irrigation and
fertilization method
项目
Item
灌水量
Irrigation
amount (mm)
氮肥施用量
N application rate
(kg/hm2)
产量
Yield
(kg/hm2)
水分生产力
Water productivity
(kg/m3)
氮肥利用效率
Nitrogen use efficiency
(kg/kg)
水肥一体化 最小值 75 95 3 755.0 1.3 12.2
Fertigation 最大值 585 450 10 407.0 3.0 72.2
平均值 228 222 7 593.0 2.2 37.9
农民模式 最小值 120 165 4 452.2 0.7 16.9
Farmers’ practice 最大值 450 290 10 207.0 2.4 47.4
平均值 300 242 7 456.2 1.8 31.4

表3

2015-2019年我国耕地灌溉面积和节水灌溉面积

年份
Year
耕地灌溉面积
Irrigation area of farmland
节水灌溉工程面积
Water-saving irrigation project area
喷灌、微喷灌面积
Sprinkler and micro-sprinkler irrigation area
低压管灌面积
Low pressure pipe irrigation area
2015 65 873 31 060 9 012 8 912
2016 67 141 32 847 9 954 9 451
2017 67 816 34 319 10 561 9 990
2018 68 272 36 135 11 338 10 566
2019 68 679 37 059 11 598 11 043
[1] 石雪侠. 农业水资源的可持续利用策略研究. 现代农业研究, 2020, 26(9):42-43.
[2] 高祥照, 杜森, 吴勇, 等. 水肥耦合是提高水肥利用效率的战略方向. 农业技术与装备, 2011(5):14-15.
[3] 蔡荣方, 曾友莲. 水肥一体化技术提高水肥利用效率研究进展. 农业开发与装备, 2018(11):87.
[4] Zhang F S, Cui Z L, Chen X P, et al. Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy, 2012, 116:1-40.
[5] Cui Z L, Chen X P, Hang F S. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. AMBIO:A Journal of the Human Environment, 2010, 39(6):376-384.
doi: 10.1007/s13280-010-0076-6
[6] Ju X T, Kou C L, Zhang F S, et al. Nitrogen balance and groundwater nitrate contamination:comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143(1):117-125.
pmid: 16364521
[7] 孙铖, 周华真, 陈磊, 等. 东北三省农田化肥氮地下淋溶污染等级评估. 农业资源与环境学报, 2018, 35(5):405-411.
[8] Hu Y K, Moiwo J P, Yang Y H, et al. Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District,North China Plain. Journal of Hydrology, 2010, 393(3):219-232.
doi: 10.1016/j.jhydrol.2010.08.017
[9] Lin S S, Hernandez-Ramirez G. Nitrous oxide emissions from manured soils as a function of various nitrification inhibitor rates and soil moisture contents. Science of the Total Environment, 2020, 738:139669.
doi: 10.1016/j.scitotenv.2020.139669
[10] David C, Lemke R, Helgason W, et al. Current inventory approach overestimates the effect of irrigated crop management on soil-derived greenhouse gas emissions in the semi-arid Canadian Prairies. Agricultural Water Management, 2018, 208:19-32.
doi: 10.1016/j.agwat.2018.06.006
[11] Trost B, Prochnow A, Drastig K, et al. Irrigation,soil organic carbon and N2O emissions. A review. Agronomy for Sustainable Development, 2013, 33(4):733-749.
doi: 10.1007/s13593-013-0134-0
[12] 申洪源. 2020年中国小麦市场分析. 粮油市场报, 2021-02-20(B02).
[13] 郑成岩, 于振文, 张永丽, 等. 不同施氮水平下灌水量对小麦水分利用特征和产量的影响. 应用生态学报, 2010, 21(11):2799-2805.
[14] 王滨. 我国小麦种植区划漫话. 黑龙江粮食, 2017(6):41-43.
[15] 党建友, 裴雪霞, 张定一, 等. 微喷灌水氮一体化对冬小麦生长发育和水肥利用效率的影响. 应用生态学报, 2020, 31(11):3700-3710.
[16] 高祥照. 水肥一体化是现代农业的“一号技术”. 中国农资, 2017(20):19.
[17] 李寒松, 贾振超, 张锋, 等. 国内外水肥一体化技术发展现状与趋势. 农业装备与车辆工程, 2018, 56(6):13-16.
[18] Bar-Yosef. Advances in fertigation. Advances in Agronomy, 1999, 65:1-77.
[19] 高祥照. 水肥一体化是提高水肥利用效率的核心. 中国农业信息, 2013(14):3-4.
[20] Michela F, Paolo B, Tosti G, et al. High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply. Agricultural Water Management, 2015, 154:52-58.
doi: 10.1016/j.agwat.2015.03.002
[21] 李茂权, 朱帮忠, 赵飞, 等. “水肥一体化”技术试验示范与应用展望. 安徽农学通报, 2011, 17(7):100-101.
[22] 张丽萍, 柳建丽, 孙胜伟, 等. 滴管暗灌蔬菜栽培技术的推广与应用. 农业技术与装备, 2012(13):54-55.
[23] 高鹏, 简红忠, 魏样, 等 水肥一体化技术的应用现状与发展前景. 现代农业科技, 2012(8):250,257.
[24] 宋计平, 王克安, 孙凯宁, 等. 膜下滴灌对春拱棚茄子经济效益及土壤质量的影响. 山东农业科学, 2016, 48(3):86-90.
[25] Dell C J, Han K, Bryant R B, et al. Nitrous oxide emissions with enhanced efficiency nitrogen fertilizers in a rainfed system. Agronomy Journal, 2014, 106(2):723-731.
doi: 10.2134/agronj2013.0108
[26] Massimiliano D A M, Parton W J, Bell M J, et al. Soybean fallow and nitrification inhibitors:strategies to reduce N2O emission intensities and N losses in Australian sugarcane cropping systems. Agriculture,Ecosystems and Environment, 2021, 306:107150.
doi: 10.1016/j.agee.2020.107150
[27] Wu Y, Yan S C, Fan J L, et al. Responses of growth,fruit yield,quality and water productivity of greenhouse tomato to deficit drip irrigation. Scientia Horticulturae, 2021, 275:109710.
doi: 10.1016/j.scienta.2020.109710
[28] Yang Q L, Zhang F C, Li F S. Effect of different drip irrigation methods and fertilization on growth,physiology and water use of young apple tree. Scientia Horticulturae, 2011, 129(1):119-126.
doi: 10.1016/j.scienta.2011.03.019
[29] Sinha I, Buttar G S, Brar A S. Drip irrigation and fertigation improve economics,water and energy productivity of spring sunflower (Helianthus annuus L.) in Indian Punjab. Agricultural Water Management, 2017, 185:58-64.
doi: 10.1016/j.agwat.2017.02.008
[30] 李坚, 刘云骥, 王丹丹, 等. 日光温室小型水肥一体灌溉机设计及其控制模型的建立. 节水灌溉, 2017(4):87-91.
[31] 李传哲, 许仙菊, 马洪波, 等. 水肥一体化技术提高水肥利用效率研究进展. 江苏农业学报, 2017, 33(2):469-475.
[32] Simpson A R, Dandy G C, Murphy L J. Genetic algorithms compared to other techniques for pipe optimization. Journal of Water Resources Planning and Management, 1994, 120(4):423-443.
doi: 10.1061/(ASCE)0733-9496(1994)120:4(423)
[33] 兰家祥. 基于Zigbee技术的水肥一体化调节系统的设计与试验. 福州:福建农林大学, 2019.
[34] 王振民, 梁春英, 黄丽萍, 等. 我国水肥一体化技术研究现状与发展对策. 农村实用技术, 2020(3):85-87.
[35] 黄语燕, 刘现, 王涛, 等. 我国水肥一体化技术应用现状与发展对策. 安徽农业科学, 2021, 49(9):196-199.
[36] Li J S. Increasing crop productivity in an eco-friendly manner by improving sprinkler and micro-irrigation design and management: a review of 20 years’ research at the IWHR,China. Irrigation and Drainage, 2018, 67:97-112.
doi: 10.1002/ird.v67.1
[37] 陈广锋, 杜森, 江荣风, 等. 我国水肥一体化技术应用及研究现状. 中国农技推广, 2013, 29(5):39-41.
[38] 新华社. 中共中央 国务院关于坚持农业农村优先发展做好“三农”工作的若干意见. (2019-02-19) [2020-07-26]. http://www.gov.cn/zhengce/2019-02/19/content_5366917.htm .
[39] 新华社. 中共中央 国务院关于抓好“三农”领域重点工作确保如期实现全面小康的意见. (2020-02-05) [2020-07-26]. http://www.gov.cn/zhengce/2020-02/05/content_5474884.htm .
[40] 农业部办公厅关于印发《推进水肥一体化实施方案(2016-2020年)》的通知. (2017-11-27)[2020-07-26]. http://www.moa.gov.cn/nybgb/2016/diwuqi/201711/t20171127_5920793.htm .
[41] Li H R, Mei X R, Wang J D, et al. Drip fertigation significantly increased crop yield,water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices:a meta-analysis in China. Agricultural Water Management, 2021, 244:106534.
doi: 10.1016/j.agwat.2020.106534
[42] Zhao W X, Shan Z J, Li J S, et al. Effects of fertigation splits through center pivot on the nitrogen uptake,yield,and nitrogen use efficiency of winter wheat grown in the North China Plain. Agricultural Water Management, 2020, 240:106291.
doi: 10.1016/j.agwat.2020.106291
[43] 张丽霞, 杨永辉, 尹钧, 等. 水肥一体化对小麦干物质和氮素积累转运及产量的影响. 农业机械学报, 2021, 52(2):275-282,319.
[44] 张英华, 张琪, 徐学欣, 等. 适宜微喷灌灌水频率及氮肥量提高冬小麦产量和水分利用效率. 农业工程学报, 2016, 32(5):88-95.
[45] 李金鹏, 宋文越, 姚春生, 等. 微喷水肥一体化对冬小麦产量和水分利用效率的影响. 中国农业大学学报, 2020, 25(3):1-9.
[46] 郭培武, 赵俊晔, 石玉, 等. 水肥一体化条件下施氮量对小麦冠层光截获特性和产量的影响. 山东农业科学, 2018, 50(8):81-85.
[47] Abedin T, Yamamoto A, Hayashi T, et al. Drip fertigation enhances the growth of hydroponic lettuce (Lactuca sativa) using polyester fiber substrate. Scientia Horticulturae, 2021, 276:109604.
doi: 10.1016/j.scienta.2020.109604
[48] Wang C Y, Liu W X, Li Q X, et al. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Research, 2014, 165:138-149.
doi: 10.1016/j.fcr.2014.04.011
[49] 宋兆云. 微喷补灌水肥一体化管理对小麦产量和水氮利用效率调节的生理基础. 泰安:山东农业大学, 2018.
[50] 武继承, 杨永辉, 潘晓莹, 等. 小麦-玉米滴灌水肥一体化的节水增产效应. 河南农业科学, 2017, 46(2):16-21.
[51] Li H R, Mei X R, Vinay N, et al. Effects of different nitrogen fertilizers on the yield,water- and nitrogen-use efficiencies of drip-fertigated wheat and maize in the North China Plain. Agricultural Water Management, 2021, 243:106474.
doi: 10.1016/j.agwat.2020.106474
[52] Man J, Wang D, White P. Photosynthesis and dry mass production of winter wheat in response to micro-sprinkling irrigation. Agronomy Journal, 2017, 109(2):549-561.
doi: 10.2134/agronj2016.05.0301
[53] Zhang Y Q, Wang J D, Gong S H, et al. Nitrogen fertigation effect on photosynthesis,grain yield and water use efficiency of winter wheat. Agricultural Water Management, 2017, 179:277-287.
doi: 10.1016/j.agwat.2016.08.007
[54] 张晶, 党建友, 裴雪霞, 等. 微喷灌水肥一体化下磷钾肥减量分期施用对小麦产量和养分利用的影响. 核农学报, 2020, 34(3):629-634.
[55] Romulo P L, Bruno M F, Jagmandeep S D, et al. Wheat grain yield and grain-nitrogen relationships as affected by N,P,and K fertilization:a synthesis of long-term experiments. Field Crops Research, 2019, 236:42-57.
doi: 10.1016/j.fcr.2019.03.005
[56] Yang J C, Zhang J H, Liu K, et al. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytologist, 2006, 171(2):293-303.
doi: 10.1111/nph.2006.171.issue-2
[57] Blacklow W M, Incoll L D. Nitrogen stress of winter wheat changed the determinants of yield and the distribution of nitrogen and total dry matter during grain filling. Functional Plant Biology, 1981, 8(2):191-200.
doi: 10.1071/PP9810191
[58] Rao A C S, Smith J L, Jandhyala V K, et al. Cultivar and climatic effects on the protein content of soft white winter wheat. Agronomy Journal, 1993, 85(5):1023-1028.
doi: 10.2134/agronj1993.00021962008500050013x
[59] Rajeev N B, Celymar A S, Shi W J, et al. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiologia Plantarum, 2017, 159(1):59-73.
doi: 10.1111/ppl.2017.159.issue-1
[60] Yadav G, Ellis R H. Effects of rain shelter or simulated rain during grain filling and maturation on subsequent wheat grain quality in the UK. The Journal of Agricultural Science, 2016, 155(2):300-316.
doi: 10.1017/S0021859616000411
[61] 赵长星, 马东辉, 王月福, 等. 施氮量和花后土壤含水量对优质强筋小麦产量和品质的影响. 生态学报, 2008, 28(9):4396-4404.
[62] Suprayogi Y, Clarke J M, Bueckert R, et al. Nitrogen remobilization and post-anthesis nitrogen uptake in relation to elevated grain protein concentration in durum wheat. Canadian Journal of Plant Science, 2011, 91(2):273-282.
doi: 10.4141/CJPS10185
[63] Tayebeh A, Alemzadeh A. Wheat yield and grain protein response to nitrogen amount and timing. Australian Journal of Crop Science, 2011, 5(3):330-336.
[64] Elliott G D, O’Sullivan C A, Margaret M R, et al. Influence of co-application of nitrogen with phosphorus,potassium and sulphur on the apparent efficiency of nitrogen fertilizer use,grain yield and protein content of wheat:review. Field Crops Research, 2018, 226:56-65.
doi: 10.1016/j.fcr.2018.07.010
[65] Yan S C, Wu Y, Fan J L, et al. Dynamic change and accumulation of grain macronutrient (N,P and K) concentrations in winter wheat under different drip fertigation regimes. Field Crops Research, 2020, 250:107767.
doi: 10.1016/j.fcr.2020.107767
[66] 张孟妮, 毛平平, 王丽, 等. 微喷水肥一体化提高冬小麦产量与品质. 中国土壤与肥料, 2017(4):86-92.
[67] 张晶, 党建友, 张定一, 等. 节水灌溉方式与磷钾肥减施对小麦产量、品质及水肥利用效率的影响. 水土保持学报, 2020, 34(6):166-171.
[68] 侯芳芳, 张睿, 孙燕妮, 等. 不同生育期喷灌对渭北旱地小麦产量及品质的影响. 麦类作物学报, 2017, 37(4):543-547.
[69] 张孟妮. 微喷水肥一体化对土壤酶活性及水氮利用效率的影响. 临汾:山西师范大学, 2018.
[70] 武继承, 潘晓莹, 杨永辉, 等. 化肥与沼肥配施水肥一体化对小麦产量与水分利用的影响. 土壤科学, 2019, 7(4):262-269.
[71] 徐兆飞, 张惠叶, 张定一. 小麦品质及其改良. 北京: 气象出版社, 2000:51-54.
[72] 姚素梅, 康跃虎, 刘海军, 等. 喷灌与地面灌溉条件下冬小麦光合作用的日变化研究. 农业工程学报, 2005, 21(11):16-19.
[73] 李伏生, 陆申年. 灌溉施肥的研究和应用. 植物营养与肥料学报, 2000, 6(2):233-242.
[74] 邹晓霞. 节水灌溉与保护性耕作应对气候变化效果分析. 北京:中国农业科学院, 2013.
[75] Wang J D, Gong S H, Xu D, et al. Impact of drip and level-basin irrigation on growth and yield of winter wheat in the North China Plain. Irrigation Science, 2013, 31(5):1025-1037.
doi: 10.1007/s00271-012-0384-7
[76] 聂紫瑾, 陈源泉, 张建省, 等. 黑龙港流域不同滴灌制度下的冬小麦产量和水分利用效率. 作物学报, 2013, 39(9):1687-1692.
[77] 宜丽宏, 王丽, 张孟妮, 等. 不同灌溉方式对冬小麦生长发育及水分利用效率的影响. 灌溉排水学报, 2017, 36(10):14-19.
[78] 周加森, 马阳, 吴敏, 等. 不同水肥措施下的冬小麦水氮利用和生物效应研究. 灌溉排水学报, 2019, 38(9):36-41.
[79] 何昕楠. 微喷补灌水肥一体化对冬小麦水分和氮素利用效率的影响. 泰安:山东农业大学, 2019.
[80] Sun H Y, Liu C M, Zhang X Y, et al. Effects of irrigation on water balance,yield and WUE of winter wheat in the North China Plain. Agricultural Water Management, 2006, 85(1):211-218.
doi: 10.1016/j.agwat.2006.04.008
[81] 陈凯丽, 赵经华, 黄红建, 等. 不同滴灌灌水定额对小麦的耗水特性和产量的影响. 灌溉排水学报, 2017, 36(3):65-68,84.
[82] 倪胜利, 李兴茂, 王亚翠, 等. 旱后复水对冬小麦生长发育及水分利用效率的影响. 灌溉排水学报, 2018, 37(11):20-25.
[83] Shen X J, Wang G S, Zeleke K T, et al. Crop water production functions for winter wheat with drip fertigation in the North China Plain. Agronomy, 2020, 10(6):876.
doi: 10.3390/agronomy10060876
[84] Granberry D M, Harrison K A, Kelley W T. Drip chemigation:injecting fertilizer,acid and chlorine. Bulletin 1130. University of Georgia,College of Agricultural and Environmental Science,Cooperative Extention Service, Athens, 2001: 13.
[85] Liu Y, Li J, Li Y. Effects of split fertigation rates on the dynamics of nitrate in soil and the yield of mulched drip-irrigated maize in the sub-humid region. Applied Engineering in Agriculture, 2015, 31(1),103-117.
[86] Zhou Z J, Plauborg F, Liu F L, et al. Yield and crop growth of table potato affected by different split-N fertigation regimes in sandy soil. European Journal of Agronomy, 2018, 92:41-50.
doi: 10.1016/j.eja.2017.10.001
[87] 林祥. 微喷补灌水肥一体化调控冬小麦水氮高效利用的生理生态机制. 泰安:山东农业大学, 2020.
[88] 陈静, 王迎春, 李虎, 等. 滴灌施肥对免耕冬小麦水分利用及产量的影响. 中国农业科学, 2014, 47(10):1966-1975.
[89] 尹飞虎, 曾胜和, 刘瑜, 等. 滴灌春麦水肥一体化肥效试验研究. 新疆农业科学, 2011, 48(12):2299-2303.
[90] Li S X, Wang Z H, Hu T T, et al. Nitrogen in dry land soils of China and it's management. Advance in Agronomy, 2009, 101:123-181.
[91] Mohamed E, Carl J R, Satish C G, et al. Potato yield response and nitrate leaching as influenced by nitrogen management. Agronomy Journal, 1998, 90(1):10-15.
doi: 10.2134/agronj1998.00021962009000010003x
[92] Quaggio J A, Souza T R, Fernando C B Z, et al. Nitrogen-fertilizer forms affect the nitrogen-use efficiency in fertigated citrus groves. Journal of Plant Nutrition and Soil Science, 2014, 177(3):404-411.
doi: 10.1002/jpln.v177.3
[93] Laher M, Avnimelech Y. Nitrification inhibition in drip irrigation systems. Plant and Soil, 1980, 55(1):35-42.
doi: 10.1007/BF02149706
[94] 党建友, 裴雪霞, 张定一, 等. 灌溉方法与施氮对土壤水分、硝态氮和小麦生长发育的调控效应. 应用生态学报, 2019, 30(4):1161-1169.
[95] Guan G, Tu S X, Li H L, et al. Phosphorus fertilization modes affect crop yield,nutrient uptake,and soil biological properties in the rice-wheat cropping system. Soil Science Society of America Journal, 2013, 77(1):166-172.
doi: 10.2136/sssaj2011.0324
[96] Wang Y, Zhao X, Wang L, et al. Phosphorus fertilization to the wheat-growing season only in a rice-wheat rotation in the Taihu Lake Region of China. Field Crops Research, 2016, 198:32-39.
doi: 10.1016/j.fcr.2016.08.025
[97] 邓九胜, 张炜, 朱荣松, 等. 基于土壤有效磷水稻磷肥施用推荐体系的探讨. 西北农业学报, 2011, 20(2):81-84.
[98] Bai S S, Kang Y H, Wan S Q. Drip fertigation regimes for winter wheat in the North China Plain. Agricultural Water Management, 2019, 228:105885.
doi: 10.1016/j.agwat.2019.105885
[99] 张晶, 党建友, 张定一, 等. 微喷灌水肥一体化小麦磷钾肥减施稳产提质研究. 中国土壤与肥料, 2018(5):115-121.
[100] Zhao Y, Luo J H, Chen X Q, et al. Greenhouse tomato-cucumber yield and soil N leaching as affected by reducing N rate and adding manure:a case study in the Yellow River Irrigation Region China. Nutrient Cycling in Agroecosystems, 2012, 94(2/3):221-235.
doi: 10.1007/s10705-012-9535-8
[101] Luis L, Gilles B, Bruna G, et al. 50 year trends in nitrogen use efficiency of world cropping systems:the relationship between yield and nitrogen input to cropland. Environmental Research Letters, 2014, 9(10):105011.
doi: 10.1088/1748-9326/9/10/105011
[102] Lv H F, Lin S, Wang Y F, et al. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environmental Pollution, 2019, 245:694-701.
doi: 10.1016/j.envpol.2018.11.042
[103] Ju M, Zhang H L, Shi W M. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production. Agricultural Water Management, 2012, 111:53-59.
doi: 10.1016/j.agwat.2012.05.003
[104] 王全九, 王文焰, 吕殿青, 等. 膜下滴灌盐碱地水盐运移特征研究. 农业工程学报, 2000, 16(4):54-57.
[105] Dumroese R K, Page-Dumroese D S, Salifu K F, et al. Exponential fertilization of Pinus monticola seedlings:nutrient uptake efficiency,leaching fractions,and early outplanting performance. Canadian Journal of Forest Research, 2005, 35(12):2961-2967.
doi: 10.1139/x05-226
[106] Zhang F, Cui Z, Fan M, et al. Integrated soil-crop system management:reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. Journal of Environmental Quality, 2011, 40:1051-1057.
doi: 10.2134/jeq2010.0292
[107] 宰松梅. 水肥一体化灌溉模式下土壤水分养分运移规律研究. 杨凌:西北农林科技大学, 2010.
[108] 李熙婷. 河套灌区膜下滴灌小麦水肥盐动态变化与灌溉制度优化研究. 呼和浩特:内蒙古农业大学, 2016.
[109] 彭雄彪. 滴灌施钾肥土壤水肥分布及运移规律研究. 杨凌:西北农林科技大学, 2020.
[110] 宜丽宏. 不同水氮模式对冬小麦―夏玉米农田水分耗散特征的影响. 临汾:山西师范大学, 2018.
[111] He Y L, Xi B Y, Li G D, et al. Influence of drip irrigation,nitrogen fertigation,and precipitation on soil water and nitrogen distribution,tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) plantations. Agricultural Water Management, 2021, 243:106460.
doi: 10.1016/j.agwat.2020.106460
[112] Zhao Y M, Lv H F, Qasim W, et al. Drip fertigation with straw incorporation significantly reduces N2O emission and N leaching while maintaining high vegetable yields in solar greenhouse production. Environmental Pollution, 2021, 273:116521.
doi: 10.1016/j.envpol.2021.116521
[113] Lv H F, Zhao Y M, Wang Y F, et al. Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top- but also in subsoil layers in solar greenhouse vegetable production systems. Geoderma, 2020, 363:114156.
doi: 10.1016/j.geoderma.2019.114156
[114] Shen W S, Lin X G, Shi W M, et al. Higher rates of nitrogen fertilization decrease soil enzyme activities,microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant and Soil, 2010, 337(1/2):137-150.
doi: 10.1007/s11104-010-0511-2
[115] 李亚莉, 赖宁, 乔江飞, 等. 不同滴灌年限小麦土壤速效养分空间变异特征. 新疆农业科学, 2018, 55(11):2069-2079.
doi: 10.6048/j.issn.1001-4330.2018.11.014
[116] 陈静. 华北小麦-玉米滴灌施肥下水氮运移和N2O排放研究. 北京:中国农业科学院, 2014.
[117] 冀雅珍, 武海霞. 膜下滴灌条件下KNO3肥液浓度对土壤水盐运移的影响. 水利水电快报, 2017, 38(4):26-29.
[118] Smith D R, Hernandez-Ramirez G, Armstrong S D, et al. Fertilizer and tillage management impacts on non-carbon-dioxide greenhouse gas emissions. Soil Science Society of America Journal, 2011, 75(3):1070-1082.
doi: 10.2136/sssaj2009.0354
[119] Eskild H B, Smith P, John R P. Decoupling of greenhouse gas emissions from global agricultural production:1970-2050. Global Change Biology, 2016, 22(2):763-781.
doi: 10.1111/gcb.13120
[120] Bouwman A F, Boumans L J M, Batjes N H, Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 2002, 16(4):1080.
[121] Smith P, Daniel M, Cai Z C, et al. Greenhouse gas mitigation in agriculture. Biological Sciences, 2008, 363(1492):789-813.
[122] Dong-Gill K, Hernandez-Ramirez G, Giltrap D. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input:a meta-analysis. Agriculture, Ecosystems and Environment, 2013, 168:53-65.
doi: 10.1016/j.agee.2012.02.021
[123] Skiba U, Smith K A, Fowler D. Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil. Pergamon, 1993, 25(11):1527-1536.
[124] Hernandez-Ramirez G, Brouder S M, Smith D R, et al. Nitrous oxide production in an eastern corn belt soil:sources and redox range. Soil Science Society of America Journal, 2009, 73(4):1182-1191.
doi: 10.2136/sssaj2008.0183
[125] Bijesh M, Rodney T V, Carl R. Fertilizer and irrigation management effects on nitrous oxide emissions and nitrate leaching. Agronomy Journal, 2014, 106(2):703-714.
doi: 10.2134/agronj2013.0179
[126] Lin S S, Hernandez-Ramirez G, Len K, et al. Timing of manure injection and nitrification inhibitors impacts on nitrous oxide emissions and nitrogen transformations in a barley crop. Soil Science Society of America Journal, 2017, 81(6):1595-1605.
doi: 10.2136/sssaj2017.03.0093
[127] Judith N, Athyna N C, Noura Z, et al. Spring wheat yield and quality related to soil texture and nitrogen fertilization. Agronomy Journal, 2012, 104(3):589-599.
doi: 10.2134/agronj2011.0342
[128] Leanne L C, Hernandez-Ramirez G, Miles D, et al. Can fertigation reduce nitrous oxide emissions from wheat and canola fields?. Science of the Total Environment, 2020, 745:141014.
doi: 10.1016/j.scitotenv.2020.141014
[129] Tian D, Zhang Y Y, Zhou Y Z, et al. Effect of nitrification inhibitors on mitigating N2O and NO emissions from an agricultural field under drip fertigation in the North China Plain. Science of the Total Environment, 2017, 598:87-96.
doi: 10.1016/j.scitotenv.2017.03.220
[130] Tian D, Zhang Y Y, Mu Y J, et al. The effect of drip irrigation and drip fertigation on N2O and NO emissions,water saving and grain yields in a maize field in the North China Plain. Science of the Total Environment, 2017, 575:1034-1040.
doi: 10.1016/j.scitotenv.2016.09.166
[131] Kennedy T L, Suddick E C, Johan S. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agriculture, Ecosystems and Environment, 2013, 170:16-27.
doi: 10.1016/j.agee.2013.02.002
[132] Zhang X, Meng F Q, Li H, et al. Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat-maize cropping system. Agricultural Water Management, 2019, 211:26-36.
doi: 10.1016/j.agwat.2018.09.045
[133] Tian D, Zhang Y Y, Mu Y J, et al. Effect of N fertilizer types on N2O and NO emissions under drip fertigation from an agricultural field in the North China Plain. Science of the Total Environment, 2020, 715:136903.
doi: 10.1016/j.scitotenv.2020.136903
[1] 杨程, 杜思梦, 张德奇, 时艳华, 李向东, 邵运辉, 方保停, 王汉芳. 基于叶绿素荧光的小麦越冬期冻害评价[J]. 作物杂志, 2022, (1): 154–160
[2] 柏军兵, 王艳杰, 王德梅, 杨玉双, 王玉娇, 郭丹丹, 刘哲文, 常旭虹, 石书兵, 赵广才. 强筋小麦产量和品质对不同土壤条件及施氮水平的响应[J]. 作物杂志, 2022, (1): 167–173
[3] 张胜全, 叶志杰, 任立平, 高新欢, 王拯, 杨永利, 穆磊, 董艳华, 陈兆波. “十五”以来我国杂交小麦审定品种分析[J]. 作物杂志, 2022, (1): 38–43
[4] 宋全昊, 金艳, 宋佳静, 白冬, 赵立尚, 陈杰, 朱统泉. 人工合成六倍体小麦在黄淮麦区育种中的利用性评价[J]. 作物杂志, 2022, (1): 56–64
[5] 葛昌斌, 张宏套, 廖平安, 曹燕燕, 黄杰, 乔冀良, 郭春强, 王君, 秦素研, 张兰, 夏明聪, 程斌, 张立异. 贵协3号小麦衍生品种(系)的赤霉病抗性评价及农艺性状分析[J]. 作物杂志, 2022, (1): 96–101
[6] 王锐, 陈士勇, 陈志青, 崔培媛, 卢豪, 杨艳菊, 张海鹏, 张洪程. 根系分泌物对根际土壤关键氮转化过程的影响[J]. 作物杂志, 2021, (6): 1–8
[7] 苏文平, 王欢, 艾木拉姑丽·库尔班, 赵鑫琳, 薛丽华, 章建新, 刘俊, 孙诗仁. 北疆临冬播小麦品种间生育特性及产量比较[J]. 作物杂志, 2021, (6): 108–114
[8] 杨娜, 席吉龙, 王珂, 席天元, 张建诚, 姚景珍, 王健. 春季灌水对晋南晚播冬小麦产量和水分利用的影响[J]. 作物杂志, 2021, (6): 115–121
[9] 郭明明, 王康君, 张广旭, 孙中伟, 李筠, 章跃树, 代丹丹, 陈凤, 樊继伟. 播期和行距互作对小麦籽粒产量和品质的调控[J]. 作物杂志, 2021, (6): 152–158
[10] 王欣, 王才. 不同播期和播种量对冬小麦生长特征和产量的影响[J]. 作物杂志, 2021, (6): 182–188
[11] 任文斌, 王倩, 吴翠翠, 谢三刚. F型小麦雄性不育系和SQ-1诱导的不育植株花粉形态电镜扫描观察[J]. 作物杂志, 2021, (6): 46–50
[12] 高甜甜, 王德梅, 王艳杰, 杨玉双, 常旭虹, 赵广才. 不同春小麦品种对氮肥处理的响应[J]. 作物杂志, 2021, (6): 67–71
[13] 吴鑫雨, 刘振洋, 李海叶, 郑毅, 汤利, 肖靖秀. 施氮和间作对蚕豆根瘤形成及氮素吸收累积的影响[J]. 作物杂志, 2021, (5): 120–127
[14] 段振盈, 徐新玉, 李星, 李在峰, 马骏, 姚占军. 12个主产区历史小麦品种抗叶锈病基因分析[J]. 作物杂志, 2021, (5): 20–27
[15] 王云, 乔玲, 闫素仙, 武棒棒, 郑兴卫, 赵佳佳. 山西省不同年代旱地小麦产量构成因素及抗旱性特征分析[J]. 作物杂志, 2021, (5): 43–49
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!