作物杂志,2022, 第6期: 124–131 doi: 10.16035/j.issn.1001-7283.2022.06.018

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

硝酸盐缓解油菜铵毒害的生理机制

王雪茹(), 陈海飞, 张振华()   

  1. 湖南农业大学资源环境学院/南方粮油作物协同创新中心,410128,湖南长沙
  • 收稿日期:2021-10-24 修回日期:2021-11-29 出版日期:2022-12-15 发布日期:2022-12-21
  • 通讯作者: 张振华
  • 作者简介:王雪茹,研究方向为植物营养与遗传,E-mail:hunaustuwxr@163.com
  • 基金资助:
    国家自然科学基金(32072664);湖南省自然科学基金杰出青年基金(2021JJ0004);国家油菜产业技术体系

Physiological Mechanism of Nitrate Mitigation of Ammonium Toxicity in Rape

Wang Xueru(), Chen Haifei, Zhang Zhenhua()   

  1. College of Resource and Environment, Hunan Agricultural University/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, Hunan, China
  • Received:2021-10-24 Revised:2021-11-29 Online:2022-12-15 Published:2022-12-21
  • Contact: Zhang Zhenhua

摘要:

为探究铵态氮条件下增硝营养对油菜铵态氮利用及生长的影响,以品种Bn60为试验材料,以纯硝培养为对照,测定不同氮形态下培养15d油菜的生物量和叶绿素含量。并在5mmol/L NH4+条件下,添加5个不同的NO3-浓度(0.0、0.1、0.3、0.6、1.0mmol/L),处理7d后测定游离NH4+含量及氮素同化酶活性,处理15d后测定生物量、全氮和阳离子含量。结果表明,与硝态氮相比,单一铵态氮导致生长抑制、叶片枯黄,但随着硝酸盐浓度的提高,铵毒害症状逐渐缓解,地上和根系的生物量、全氮量和氮累积量均显著增加。增硝营养显著增强了油菜地上部谷氨酰胺合成酶活性,进而降低游离铵态氮含量,另外K+、Ca2+和Mg2+等阳离子含量均随着硝态氮的增加而显著提高。硝酸盐能增强氮素同化酶的活性,从而降低NH4+含量,同时提高Mg2+等阳离子含量和光合作用,最终缓解铵毒害性状,促进油菜的生长。

关键词: 油菜, 铵毒害, 铵态氮, 硝态氮, 生理机制

Abstract:

In order to explore the effects of nitrate nutrition on ammonium nitrogen utilization and growth of rape (Brassica napus L.), the biomass and chlorophyll concentration of rape cultured for 15 days under different nitrogen forms were measured by using Bn60 as experimental material and pure nitrate culture as control. Under the condition of 5mmol/L NH4+, five different NO3- concentrations (0.0, 0.1, 0.3, 0.6 and 1.0mmol/L) were added. After seven days of treatment, the concentration of NH4+ and the activity of nitrogen assimilation enzyme were measured. After 15 days of treatment, the concentration of biomass, total nitrogen and cation groups were measured. The results showed that compared with nitrate nitrogen, single ammonium nitrogen led to growth inhibition and yellow leaves, but with the increase of nitrate concentration, the symptoms of ammonium toxicity gradually relieved, and the shoot and root biomass, total nitrogen and nitrogen accumulation increased significantly. Increased nitrate feeding increased glutamine synthase (GS) activity in rape shoots, which led to a decrease in free ammonium ion concentration. Furthermore, as nitrate nitrogen levels rose, the concentrations of cations such as K+, Ca2+, and Mg2+ rose as well. Nitrate could increase the activity of nitrogen absorbing enzymes, decrease ammonium ion concentrations, increase the contents of Mg2+ and other cations, as well as photosynthesis, mitigate ammonium toxicity and improve rape growth.

Key words: Rape, Ammonium toxicity, Ammonium nitrogen, Nitrate nitrogen, Physiological mechanism

图1

铵毒害对油菜生长和叶绿素含量的影响 正常培养(CK)和纯铵培养(5mmol/L NH4+)油菜整体的表型(a)、叶片表型(b)、地上和地下的生物量(c)及叶绿素含量(d)。数据以平均值±标准误表示(n=3)。“**”表示在P < 0.01水平差异显著

图2

添加外源硝酸盐对油菜生长和光合的影响 数据以平均值±标准误表示(n=3)。柱子上字母不同表示在P < 0.05水平差异显著,下同

图3

外源添加硝酸盐对油菜阳离子含量的影响

图4

添加外源硝酸盐对油菜氮同化能力的影响

图5

添加外源硝酸盐对油菜总氮含量的影响

[1] Lu Y L, Xu Y C, Shen Q R, et al. Effects of different nitrogen forms on the growth and cytokinin content in xylem sap of tomato (Lycopersicon esculentum Mill.) seedlings. Plant and Soil, 2009, 315(1/2):67-77.
doi: 10.1007/s11104-008-9733-y
[2] Rubio-Asensio J S, Bloom A J. Inorganic nitrogen form:a major player in wheat and arabidopsis responses to elevated CO2. Journal of Experimental Botany, 2017, 68(10):2611-2625.
doi: 10.1093/jxb/erw465 pmid: 28011716
[3] Ruan J, Gerendás J, Härdter R, et al. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Annals of Botany, 2007, 99(2):301-310.
pmid: 17204540
[4] Yang S, Hao D, Song Z, et al. RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies. Gene, 2015, 555(2):305-317.
doi: 10.1016/j.gene.2014.11.021
[5] Hirel B, Le Gouis J, Ney B, et al. The challenge of improving nitrogen use efficiency in crop plants:towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 2007, 58(9):2369-2387.
doi: 10.1093/jxb/erm097
[6] Bittsánszky A, Pilinszky K, Gyulai G, et al. Overcoming ammonium toxicity. Plant Science, 2015, 231:184-190.
doi: 10.1016/j.plantsci.2014.12.005 pmid: 25576003
[7] Speer M, Kaiser W M. Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants. II. Inter- and intracellular solute compartmentation in leaflets. Plant Cell and Environment, 1994, 17(11):1223-1231.
doi: 10.1111/j.1365-3040.1994.tb02020.x
[8] Hachiya T, Inaba J, Wakazaki M, et al. Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nature Communicaton, 2021, 12(1):4944.
[9] 刘强, 宋海星, 荣湘民, 等. 不同品种油菜子粒产量及氮效率差异研究. 植物营养与肥料学报, 2009, 15(4):898-903.
[10] 荣楠, 韩永亮, 荣湘民, 等. 油菜NO3-的吸收、分配及氮利用效率对低氮胁迫的响应. 植物营养与肥料学报, 2017, 23(4):1104-1111.
[11] 邹小云, 刘宝林, 宋来强, 等. 花期渍水逆境下氮素对油菜产量及氮肥利用效率的影响. 应用生态学报, 2016, 27(4):1169-1176.
doi: 10.13287/j.1001-9332.201604.021
[12] 张智, 丛日环, 鲁剑巍. 中国冬油菜产业氮肥减施增效潜力分析. 植物营养与肥料学报, 2017, 23(6):1494-1504.
[13] Zhang D, Hua Y, Wang X, et al. A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.). PLoS ONE, 2014, 9(11):e112089.
[14] Han Y L, Song H X, Liao Q, et al. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiology, 2016, 170(3):1684-1698.
doi: 10.1104/pp.15.01377
[15] Svečnjak Z, Rengel Z. Canola cultivars differ in nitrogen utilization efficiency at vegetative stage. Field Crops Research, 2006, 97(2):221-226.
doi: 10.1016/j.fcr.2005.10.001
[16] 简少芬. NRT1.1介导拟南芥响应镉和铵胁迫的机理研究. 长沙: 湖南农业大学, 2018.
[17] Ruiz J M, Romero L. Relationship between potassium fertilisation and nitrate assimilation in leaves and fruits of cucumber (Cucumis sativus) plants. Annals of Applied Biology, 2002, 140(3):241-245.
doi: 10.1111/j.1744-7348.2002.tb00177.x
[18] Roosta H R, Schjoerring J K. Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants. Journal of Plant Nutrition, 2007, 30(11):1933-1951.
doi: 10.1080/01904160701629211
[19] Wang Y T, Chang Y C A. Effects of nitrogen and the various forms of nitrogen on Phalaenopsis orchid—a review. Horttechnology, 2017, 27(2):144-149.
doi: 10.21273/HORTTECH03204-16
[20] Satoshi K, Kazuo Y, Yoshikuni S. Effects of ammonium to nitrate ratio in culture medium on growth and nutrient absorption of phalaenopsis seedlings in vitro. Environment Control in Biology, 2000, 38(4):281-284.
doi: 10.2525/ecb1963.38.281
[21] 常笑超, 刘勇, 李进宇, 等. 不同形态氮素配比对雄性毛白杨苗木生长的影响. 北京林业大学学报, 2018, 40(9):63-71.
[22] Thu Hoai N T, Shim I S, Kobayashi K, et al. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regulation, 2003, 41(2):159-164.
doi: 10.1023/A:1027305522741
[23] Nguyen H T T, Shim I S, Kobayashi K, et al. Regulation of ammonium accumulation during salt stress in rice (Oryza sativa L.) seedlings. Plant Production Science, 2005, 8(4):397-404.
doi: 10.1626/pps.8.397
[24] 刘婷, 尚忠林. 植物对铵态氮的吸收转运调控机制研究进展. 植物生理学报, 2016, 52(6):799-809.
[25] Kiyomiya S, Nakanishi H, Uchida H, et al. Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting tracer imaging system. Plant Physiology, 2001, 125(4):1743-1753.
pmid: 11299355
[26] Husted S, Hebbern C A, Mattsson M, et al. A critical experimental evaluation of methods for determination of NH4+ in plant tissue,xylem sap and apoplastic fluid. Physiologia Plantarum, 2000, 109(2):167-179.
doi: 10.1034/j.1399-3054.2000.100209.x
[27] Jian S, Liao Q, Song H, et al. NRT1.1-Related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation. Plant Physiology, 2018, 178(4):1473-1488.
doi: 10.1104/pp.18.00410
[28] 张小翠, 刘玉梅, 白龙强, 等. 亚适宜温光环境下不同硝铵比营养液对黄瓜幼苗生长、氮吸收和代谢的影响. 应用生态学报, 2016, 27(8):2527-2534.
[29] 徐晓鹏, 傅向东, 廖红. 植物铵态氮同化及其调控机制的研究进展. 植物学报, 2016, 51(2):152-166.
doi: 10.11983/CBB15077
[30] 迟荪琳, 杨芸, 徐卫红, 等. 小白菜硝酸盐含量与NO3-/NH4+及氮代谢关键酶的相关性. 食品科学, 2015, 36(23):70-77.
[31] Zhang Z, Zhou T, Liao Q, et al. Integrated physiologic,genomic and transcriptomic strategies involving the adaptation of allotetraploid rapeseed to nitrogen limitation. BioMed Central, 2018, 18(1):1-18.
[32] Boari F, Calabrese N, Renna M, et al. Effects of biofertilizers on gas exchange,yield and quality of some broccoli cultivars in organic farming. Acta Horticulturae, 2013, 1005:397-404.
[33] 公华锐, 骆洪义, 亓艳艳, 等. 不同硝铵比对基质栽培番茄氮素代谢关键酶及其氮素利用效率的影响. 北方园艺, 2017(24):7-16.
[34] 胡国策, 蒋家月, 田坤红, 等. 氮素形态和水平对茶树生理特性的影响. 安徽农业大学学报, 2018, 45(4):588-593.
[35] 刘赵帆. 氮素形态及配比对花椰菜产量、品质和养分吸收的影响. 兰州: 甘肃农业大学, 2013.
[36] 卢颖林. 铵硝营养影响番茄幼苗生长和氮素代谢的分子生理机制. 南京: 南京农业大学, 2009.
[37] 杨阳. 氮素形态对葡萄生长发育的影响. 泰安: 山东农业大学, 2010.
[38] Na L, Li Z, Xiangxiang M, et al. Effect of nitrate/ammonium ratios on growth,root morphology and nutrient elements uptake of watermelon (Citrullus Lanatus) seedlings. Journal of Plant Nutrition, 2014, 37(11):1859-1872.
doi: 10.1080/01904167.2014.911321
[39] Gao Y, Li Y, Yang X, et al. Ammonium nutrition increases water absorption in rice seedlings (Oryza sativa L.) under water stress. Plant and Soil, 2010, 331:193-201.
doi: 10.1007/s11104-009-0245-1
[40] 李保海, 施卫明. 拟南芥幼苗对高NH4+响应的特征及不同生态型间的差异. 土壤学报, 2007, 44(3):508-515.
[41] 刘璐, 李强, 丁梦娇, 等. 干旱胁迫下不同氮素形态及硝铵比对烤烟苗期生理指标的影响. 扬州大学学报(农业与生命科学版), 2019, 40(5):117-122.
[42] Tabatabaei S J, Yusefi M, Hajiloo J. Effects of shading and NO3:NH4 ratio on the yield,quality and N metabolism in strawberry. Scientia Horticulturae, 2008, 116(3):264-272.
doi: 10.1016/j.scienta.2007.12.008
[43] Britto D T, Siddiqi M Y, Glass A D M, et al. Futile transmembrane NH4+ cycling:a cellular hypothesis to explain ammonium toxicity in plants. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(7):4255-4258.
[44] 王利超, 王涵, 朴世领, 等. 铵硝氮配比对烤烟生长生理及产量和品质的影响. 西北农林科技大学学报(自然科学版), 2012, 40(12):136-144.
[45] Guo S, Zhou Y, Shen Q, et al. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth,photosynthesis,photorespiration,and water relations. Plant Biology, 2007, 9(1):21-29.
pmid: 17048140
[46] Agrawal R, Gupta S, Gupta N K, et al. Effect of sodium chloride on gas exchange,antioxidative defense mechanism and ion accumulation in different cultivars of Indian jujube (Ziziphus mauritiana L.). Photosynthetica, 2013, 51(1),95-101.
doi: 10.1007/s11099-013-0003-8
[1] 陶玥玥, 孙华, 王海候, 陆长婴, 沈明星. 刈割期与晾晒天数对饲料油菜产量和粗蛋白含量及水分的影响[J]. 作物杂志, 2022, (5): 215–220
[2] 邹小云, 官梅, 官春云. 甘蓝型油菜氮素高效吸收的植株形态与生理特性研究[J]. 作物杂志, 2022, (5): 97–103
[3] 庞星月, 万林, 李素, 王宇航, 刘晨, 肖晓璐, 李心昊, 马霓. 外源SLs和纳米K2MoO4对干旱胁迫下油菜种子萌发的影响[J]. 作物杂志, 2022, (4): 214–220
[4] 吴鹏博, 李立军, 张艳丽. 油菜苗期耐盐碱性综合评价与根际土壤有机酸含量比较[J]. 作物杂志, 2022, (1): 110–115
[5] 林晓阳, 杜德志, 柳海东, 李钧. 特早熟甘蓝型春油菜恢复系核心种质构建[J]. 作物杂志, 2022, (1): 31–37
[6] 李心昊, 李俊, 万林, 刘丽欣, 刘君权, 马霓. 丘陵地区免耕条播对油菜生长、根系和产量的影响[J]. 作物杂志, 2021, (6): 139–144
[7] 熊廷浩, 资涛, 张嫒, 胡宇倩, 彭芝, 宋海星. 化肥减量条件下不同有机肥用量对油菜养分利用和产量的影响[J]. 作物杂志, 2021, (3): 133–139
[8] 秦璐, 王建强, 韩配配, 李银水, 顾炽明, 胡小加, 谢立华, 廖星. 不同氮效率油菜种质苗期氮吸收转运与利用差异研究[J]. 作物杂志, 2021, (3): 28–33
[9] 易镇邪, 王元元, 谷子寒, 帅泽宇, 屠乃美, 陈平平. 镉污染稻区油菜–中稻替代双季稻种植的可行性研究[J]. 作物杂志, 2021, (3): 65–69
[10] 周江, 谢宜章, 向平安. 湖南主要大田作物系统投入产出的能值分析[J]. 作物杂志, 2021, (1): 175–181
[11] 吕伟生, 肖小军, 黄天宝, 肖国滨, 李亚贞, 肖富良, 韩德鹏, 郑伟. 缓释型配方肥在晚稻套播油菜上的施用效果研究[J]. 作物杂志, 2020, (6): 143–150
[12] 王芙蓉, 张建学, 郭岷江, 张亚宏, 范提平, 王亚宏, 张岩, 裴国平, 雷建明. 苗后除草剂喷施时期对杂草防治及冬油菜产量和品质的影响[J]. 作物杂志, 2020, (5): 204–208
[13] 张耀文, 李殿荣, 侯君利, 孔建, 张文学, 董育红, 赵小光, 田建华, 张忠鑫. 油菜种子中亚麻酸研究现状及改良思路[J]. 作物杂志, 2020, (4): 21–29
[14] 柳海东,余青兰,王瑞生,杜德志. 春油菜区抗跳甲油菜资源的筛选[J]. 作物杂志, 2020, (2): 34–40
[15] 胡宇倩,资涛,熊廷浩,张振华,宋海星. 早熟与常规熟期冬油菜品种养分吸收规律差异研究[J]. 作物杂志, 2020, (1): 117–123
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!