作物杂志,2023, 第3期: 230–237 doi: 10.16035/j.issn.1001-7283.2023.03.032

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

滴灌的毛管间距和滴头间距对匀播冬小麦光合、干物质积累和产量形成的影响

罗四维1(), 石秀楠1(), 贾永红2, 张金汕1, 王凯1, 李丹丹1, 王润琪1, 董艳雪1, 石书兵1()   

  1. 1新疆农业大学农学院,830052,新疆乌鲁木齐
    2新疆农业科学院奇台麦类试验站,831800,新疆奇台
  • 收稿日期:2021-12-13 修回日期:2022-02-17 出版日期:2023-06-15 发布日期:2023-06-16
  • 通讯作者: 石书兵,研究方向为小麦高产栽培,E-mail:ssb@xjau.edu.cn
  • 作者简介:罗四维,研究方向为小麦高产栽培,E-mail:lsw329603142@163.com;|石秀楠为共同第一作者,研究方向为应用统计,E-mail:274140557@qq.com
  • 基金资助:
    新疆维吾尔自治区科技援疆项目(2016E02003);新疆农业大学高层次人才科研培育计划项目(2521GCCRC)

Effects of Drip Irrigation Capillary Spacing and Drop Spacing on Photosynthesis, Dry matter Accumulation, and Yield Formation of Uniformly Sown Winter Wheat

Luo Siwei1(), Shi Xiunan1(), Jia Yonghong2, Zhang Jinshan1, Wang Kai1, Li Dandan1, Wang Runqi1, Dong Yanxue1, Shi Shubing1()   

  1. 1College of Agronomy of Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Qitai Wheat Experimental Station, Xinjiang Academy of Agricultural Sciences, Qitai 831800, Xinjiang, China
  • Received:2021-12-13 Revised:2022-02-17 Online:2023-06-15 Published:2023-06-16

摘要:

本研究旨在优化冬小麦立体匀播方式下的滴灌带配置方式。以新冬22号为试验材料,在立体匀播方式下,采用双因素裂区试验,主区滴头间距设20(T1)和30cm(T2)2个处理,副区毛管间距设30(D1)、40(D2)、50(D3)、60(D4)和70cm(D5)5个水平,研究了滴头间距和毛管间距对匀播冬小麦光合特性、土壤水含量空间分布、干物质积累与分配及产量形成的影响。结果表明,同一毛管间距下,T1冬小麦叶面积指数(LAI)、叶绿素相对含量(SPAD值)、净光合速率(Pn)、成熟期地上部植株干物质积累量及其籽粒分配、穗数和产量均高于T2,分别提高0.14%~4.74%、0.09%~3.51%、0.31%~2.73%、1.40%~3.77%、1.47%~3.88%、1.22%~2.82%和1.15%~4.93%。产量以T1D2最高,为9247.95kg/hm2。LAI、SPAD值、Pn、土壤含水量空间分布、植株干物质积累、穗数和产量在滴头间距20cm和毛管间距30cm和40cm(T1D1、T1D2)保持较高水平,其中,T1D2处理表现最优。综合分析产出和投入量,在本试验灌水定额条件下,滴头间距20cm、毛管间距50cm(T1D3)是最佳滴灌带配置组合。

关键词: 冬小麦, 毛管间距, 滴头间距, 光合特性, 土壤含水量, 干物质积累与分配, 产量

Abstract:

Our objective was to identify the optimum of drip irrigation under the tridimensional uniform sowing mode of winter wheat. The experiment was designed with a split-split plot arrangement of Xindong 22, the main plot were the dripper spacing including two treatments, 20 (T1) and 30cm (T2), the sub-plot were drop spacing including five levels, 30 (D1), 40 (D2), 50 (D3), 60 (D4), and 70cm (D5). The effects of drip irrigation capillary spacing and emitter spacing on photosynthetic characteristics, dry matter accumulation and distribution, as well as yield formation and benefits of uniform-sown winter wheat were determined. The results showed that with the same dripper spacing, the leaf area index (LAI), SPAD values, the net photosynthetic rate (Pn), the dry matter accumulation of the above-ground at the maturity stage and the distribution ratio in the grain, the number of ears and the yield of T1 treatment were higher than those of T2 treatment, increasing by 0.14%-4.74%, 0.09%-3.51%, 0.31%-2.73%, 1.40%-3.77%, 1.47%-3.88%, 1.22%-2.82% and 1.15%-4.93%, respectively. The yield of T1D2 treatment (9247.95kg/ha), was the highest. LAI, SPAD values, Pn, spatial distribution of soil water, plant dry matter accumulation, spike number and yield were maintained at a high level in the dripper spacing of 20cm and capillary spacing of 30 and 40cm (T1D1, T1D2), of which T1D2 performed the best. According to its output and input, the T1D3 treatment with drop spacing 20cm and capillary spacing 50cm was the best drip irrigation combination at the same irrigation quota in this experiment.

Key words: Winter wheat, Capillary spacing, Drop spacing, Photosynthetic characteristics, Soil water content, Dry matter accumulation and distribution, Yield

图1

滴头间距和毛管间距对冬小麦LAI的影响 不同小写字母表示处理间在P < 0.05水平差异显著,下同

图2

滴头间距和毛管间距对冬小麦SPAD值的影响

图3

滴头间距和毛管间距对冬小麦Pn的影响

图4

开花期不同处理滴水前后土壤含水量空间变化特征

表1

滴头间距和毛管间距对冬小麦成熟期干物质积累与分配的影响

处理
Treatment
干物质积累量
(g/株)
Dry matter
accumulation
(g/plant)
茎鞘
Stem and sheath
叶片
Leaf
穗轴和颖壳
Spike axis and kernel hus
籽粒
Grain
干重(g/株)
Dry weight
(g/plant)
占比
Percentage
(%)
干重(g/株)
Dry weight
(g/plant)
占比
Percentage
(%)
干重(g/株)
Dry weight
(g/plant)
占比
Percentage
(%)
干重(g/株)
Dry weight
(g/plant)
占比
Percentage
(%)
T1 D1 9.26b 3.08ab 33.24b 1.00a 10.80a 1.18bc 12.79a 4.00ab 43.17a
D2 9.56a 3.17a 33.17b 1.03a 10.81a 1.29a 13.46a 4.07a 42.57a
D3 9.02c 3.13ab 34.70a 0.88c 9.70c 1.16cd 12.86a 3.85c 42.73a
D4 8.85d 3.04ab 34.41ab 0.86cd 9.69c 1.12de 12.68a 3.82cd 43.21a
D5 8.40ef 2.82d 33.51ab 0.82de 9.76c 1.10e 13.05a 3.67e 43.67a
T2 D1 9.12bc 3.09ab 33.91ab 0.93b 10.25b 1.17cd 12.82a 3.92bc 43.02a
D2 9.27b 3.12ab 33.61ab 0.99a 10.70ab 1.23b 13.24a 3.93bc 42.45a
D3 8.72d 2.99bc 34.30ab 0.85cd 9.77c 1.16cd 13.34a 3.71de 42.59a
D4 8.51e 2.89cd 33.93ab 0.83de 9.70c 1.12de 13.21a 3.67e 43.16a
D5 8.28f 2.80d 33.79ab 0.79e 9.49c 1.08e 13.08a 3.62e 43.64a

表2

滴头间距和毛管间距对冬小麦产量及其构成因素的影响

处理
Treatment
穗数
Spikes number
(×104/hm2)
穗粒数
Grains
per spike
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
T1 D1 657.33ab 29.29ab 48.38ab 9034.39a
D2 661.33a 29.02b 48.16b 9247.95a
D3 641.33bc 29.44ab 48.52a 9121.65a
D4 602.33d 28.10c 48.24b 8538.59c
D5 573.67e 27.85c 47.86cd 8127.25de
T2 D1 649.33ab 29.28ab 48.09bc 8922.16ab
D2 642.67bc 29.85a 48.18b 9140.87a
D3 630.67c 29.06b 48.20b 8672.28bc
D4 592.67d 28.24c 48.09bc 8338.42cd
D5 561.67e 27.81c 47.76d 7997.09e

表3

Economic profit of dripper spacing and drip irrigation capillary spacing modes 元/hm2 yuan/hm2

处理
Treatment
产值
Output value
机耕费用
Mechanical farming cost
水费
Water cost
肥料费用
Fertilizer cost
毛管费用
Dropper cost
经济效益
Economic profit
T1 D1 24 663.89 1500 1500 1400 3200.00 17 063.89
D2 25 246.89 1500 1500 1400 2400.00 18 446.89
D3 24 902.10 1500 1500 1400 1920.00 18 582.10
D4 23 310.34 1500 1500 1400 1600.00 17 310.34
D5 22 187.40 1500 1500 1400 1371.43 16 415.97
T2 D1 24 357.49 1500 1500 1400 3733.33 16 224.16
D2 24 954.58 1500 1500 1400 2800.00 17 754.58
D3 23 675.34 1500 1500 1400 2240.00 17 035.34
D4 22 763.88 1500 1500 1400 1866.67 16 497.21
D5 21 832.06 1500 1500 1400 1600.00 15 832.06
[1] 陈东. 新疆小麦滴灌技术的应用现状、存在问题及对策. 新疆农垦科技, 2018, 41(5):7-8.
[2] 万碧光. 浅析农田水利建设管理. 农家参谋, 2018(11):201.
[3] 张小清, 艾克热木·阿布拉. 新疆农业用水空间差异分析. 合作经济与科技, 2019(6):8-10.
[4] Metin S A, Attila Y, Muzaffer C, et al. Effect of drip irrigation management on yield and quality of field grown green beans. Agricultural Water Management, 2004, 71(3):243-255.
doi: 10.1016/j.agwat.2004.09.004
[5] 刘浩, 孙景生, 梁媛媛, 等. 滴灌条件下温室番茄需水量估算模型. 应用生态学报, 2011, 22(5):1201-1206.
[6] 刘新永, 田长彦, 马英杰, 等. 南疆膜下滴灌棉花耗水规律以及灌溉制度研究. 干旱地区农业研究, 2006(1):108-112.
[7] 晏清洪, 王伟, 任德新, 等. 滴灌湿润比对成龄库尔勒香梨生长及耗水规律的影响. 干旱地区农业研究, 2011, 29(1):7-13.
[8] 周青云, 康绍忠. 葡萄根系分区交替滴灌的土壤水分动态模拟. 水利学报, 2007, 38(10):1245-1252.
[9] 李毅杰, 原保忠, 别之龙, 等. 不同土壤水分下限对大棚滴灌甜瓜产量和品质的影响. 农业工程学报, 2012, 28(6):132-138.
[10] Gopalakrishnan M. Sprinkler and micro-irrigated areas in some member countries of ICID. Irrigation and Drainage, 2008, 57(5):603-604.
doi: 10.1002/ird.v57:5
[11] 雷钧杰. 新疆滴灌小麦带型配置及水氮供给对产量品质形成的影响. 北京: 中国农业大学, 2017.
[12] 商健, 刘义国, 姜雯, 等. 滴灌模式对冬小麦花后光合特性与产量的影响. 麦类作物学报, 2013, 33(3):483-488.
[13] Rui C, Wen H C, Jing C, et al. Lateral spacing in drip-irrigated wheat: The effects on soil moisture, yield, and water use efficiency. Field Crops Research, 2015, 179:52-62.
doi: 10.1016/j.fcr.2015.03.021
[14] 张娜, 张永强, 唐江华, 等. 滴灌带配置方式对冬小麦生长及产量的影响. 麦类作物学报, 2013, 33(6):1197-1201.
[15] 袁昌富. 滴头间距对线源滴灌土壤湿润均匀度的影响研究. 石河子:石河子大学, 2011.
[16] 赵广才, 郝德有, 常旭虹, 等. 小麦立体匀播技术. 农业科技通讯, 2015(7):184-186.
[17] 于振文, 田奇卓, 潘庆民, 等. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002, 28(5):577-585.
[18] 陈晓远, 罗远培. 土壤水分变动对冬小麦干物质分配及产量的影响. 中国农业大学学报, 2001(1):96-103.
[19] 杨艳芬, 王全九, 白云岗, 等. 极端干旱地区滴灌条件下葡萄生长发育特征. 农业工程学报, 2009, 25(12):45-50.
[20] 王玉珏, 薛如君, 马二登, 等. 滴头间距和施肥方式对烤烟产质量的影响. 节水灌溉, 2019(2):59-63.
[21] 王洋, 伍娟, 黄兴法, 等. 种植密度和滴头间距对民勤春玉米产量及土壤水氮影响. 节水灌溉, 2020(3):1-6,11.
[22] 刘冲, 贾永红, 张金汕, 等. 播种方式和灌水量对春小麦干物质和产量的影响. 麦类作物学报, 2019, 39(6):728-737.
[23] 董琦, 高志强, 王爱萍, 等. 不同种植方式对麦田土壤水分蒸散、风蚀及产量的影响. 水土保持学报, 2011, 25(2):237-240.
[24] 孟凡德, 马林, 石书兵, 等. 不同耕作条件下春小麦干物质积累动态及其相关性状的研究. 麦类作物学报, 2007, 27(4):693- 698.
[25] 李文雄, 曾寒冰. 春小麦籽粒增重的研究. 中国农业科学, 1985, 18(6):14-20.
[26] 吕钊彦. 不同行管比滴灌模式对新疆春小麦产量及品质行间差异形成的影响及其生理机理. 南京:南京农业大学, 2017.
[27] 张定一, 张永清, 闫翠萍, 等. 基因型、播期和密度对不同成穗型小麦籽粒产量和灌浆特性的影响. 应用与环境生物学报, 2009, 15(1):28-34.
[28] 山仑, 吴玫君, 谢其明, 等, 小麦灌浆期生理特性和土壤水分条件对灌浆影响的研究. 植物生理学通讯, 1980(3):41-46.
[29] 王敏, 张从宇, 姚维传, 等. 不同生育期干旱胁迫对小麦产量的影响. 安徽农业科学, 2001(5):605-607,610.
[30] 曹俊. 陕北山地微灌土壤水分入渗特性与枣树耗水规律试验研究,. 西安:西安理工大学, 2010.
[31] 蒋桂英, 魏建军, 刘萍, 等. 滴灌春小麦生长发育与水分利用效率的研究. 干旱地区农业研究, 2012, 30(6):50-54,73.
[32] 万刚. 滴灌带不同配置方式对小麦生长发育及产量的影响. 安徽农学通报, 2010, 16(17):81,100.
[1] 袁帅, 陈基旺, 陈平平, 易镇邪. 湘早籼45号头季与再生季产量及镉积累分配对灌溉方式的响应[J]. 作物杂志, 2023, (3): 101–108
[2] 张国忠, 李娟, 李毓才, 金寿林, 洪汝科, 黄大军, 普世皇, 施从波, 段自林, 马迪, 陈丽娟. 氮肥减施与移栽密度对杂交粳稻滇禾优615产量和食味品质的影响[J]. 作物杂志, 2023, (3): 109–115
[3] 马义虎, 何贤彪, 陈剑, 汤学军, 王旭辉, 何豪豪, 金羽清, 齐文, 蒋海凌, 周翠. 秧龄对浙东南地区优质稻产量和品质的影响[J]. 作物杂志, 2023, (3): 116–125
[4] 赵云, 冯国郡, 胡相伟, 吾买尔江·库尔班, 李鹏兵, 李翠梅, 阿克博塔·木合亚提. 新疆喀什地区适栽抗除草剂复播谷子品种筛选初报[J]. 作物杂志, 2023, (3): 126–133
[5] 邢丕鹏, 黄彦峰, 易思媛, 兰儒剑, 潘圣刚, 莫钊文, 田华, 段美洋, 唐湘如. 抽穗期叶面喷施鸟氨酸对香稻产量、品质以及2-乙酰基-1-吡咯啉生物合成的影响[J]. 作物杂志, 2023, (3): 134–138
[6] 李俊志, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才. 施氮水平对不同强筋小麦品种产量和品质的影响[J]. 作物杂志, 2023, (3): 148–153
[7] 宋春燕, 万运帆, 李玉娥, 蔡岸冬, 胡严炎, 周慧, 朱波, 王斌. 温度和CO2浓度升高下双季稻茎蘖动态、成穗率与产量的关系[J]. 作物杂志, 2023, (3): 159–166
[8] 徐茜, 曾新宇, 肖波, 李保证, 张兴端. 叶面肥对叶菜型甘薯茎尖产量和品质的影响[J]. 作物杂志, 2023, (3): 183–187
[9] 郭书磊, 王瑛, 魏良明, 张新, 刘焱, 吴伟华, 卢道文, 雷晓兵, 王振华, 鲁晓民. 不同生态条件下玉米产量影响因素分析[J]. 作物杂志, 2023, (3): 205–214
[10] 邵扬, 郭延平, 闵庚梅, 杨晓明. 不同功能除草剂对蚕豆生长和田间杂草的防治效果[J]. 作物杂志, 2023, (3): 254–259
[11] 张海斌, 吴晓华, 于美玲, 王小兵, 叶君, 崔思宇, 李元清, 王占贤, 张宏旭, 薛伟, 李岩, 崔国惠, 赵轩微, 刘娟. 内蒙古区域试验小麦品种(系)籽粒产量AMMI模型分析[J]. 作物杂志, 2023, (3): 27–34
[12] 李晶, 李鹏程, 贺永斌, 邢雅玲, 孟凡华, 周谦, 南铭. 16份俄罗斯冬小麦品种资源主要性状多元分析和综合评价[J]. 作物杂志, 2023, (3): 58–65
[13] 高振贤, 曹巧, 单子龙, 傅晓艺, 韩然, 何明琦, 史占良, 郑树松. 倒春寒对323份冬小麦种质资源影响初探[J]. 作物杂志, 2023, (3): 86–93
[14] 卫云飞, 李猛, 季新, 刘娟, 王付娟, 刘秋员. 不同耕播方式对秸秆全量还田下麦茬直播稻生长和产量的影响[J]. 作物杂志, 2023, (3): 94–100
[15] 杨世奇, 陈丽明, 周燕芝, 谭雪明, 曾勇军, 石庆华, 潘晓华, 曾研华. 杂草防除对双季直播优质晚籼稻产量和稻米品质的影响[J]. 作物杂志, 2023, (2): 121–125
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!