作物杂志,2025, 第2期: 207214 doi: 10.16035/j.issn.1001-7283.2025.02.028
李启彪1,2(), 张雪姣1,2, 徐磊1,2, 胡永华1, 徐志军1,2(
)
Li Qibiao1,2(), Zhang Xuejiao1,2, Xu Lei1,2, Hu Yonghua1, Xu Zhijun1,2(
)
摘要:
为明确生物炭基菌肥对小白菜种植土壤肥力及根际细菌多样性的影响,采用盆栽培养试验,研究空白对照(CK)、无菌培养基对照(SM)、生物炭对照(BC)、特基拉芽孢杆菌菌液(BT)、生物炭耦合特基拉芽孢杆菌(BTBC)5个处理下小白菜生长指标、土壤肥力及根际细菌组成。结果表明,BTBC处理下小白菜鲜重显著高于CK、SM、BC、BT处理,增幅分别为161.7%、49.9%、10.7%和12.1%;BTBC处理较CK显著提高了土壤的pH、碱解氮、速效钾、有机质及阳离子交换量,提高幅度分别为16.7%、10.1%、31.7%、41.4%和23.7%。BTBC处理显著增加了根际细菌群落的丰度与多样性,较BT处理更有效促进了特基拉芽孢杆菌在土壤中的定殖,并提高了与土壤碳氮循环相关的黄色土壤杆菌属、出芽单胞菌属、慢生根瘤菌属和鞘氨醇单胞菌属的丰度。因此,生物炭耦合芽孢杆菌可有效提高土壤肥力与根际促生细菌丰度,有更好的促生增产效果。
[1] | 麻坤, 刁钢. 化肥对中国粮食产量变化贡献率的研究. 植物营养与肥料学报, 2018, 24(4):1113-1120. |
[2] | 孙海军, 吴思, 萧洪东, 等. 化肥氮素减施条件下生物炭施用对冬瓜产量和品质及土壤氮素淋失的影响. 土壤通报, 2023, 54(3):673-681. |
[3] | Aloo B N, Tripathi V, Makumba B A, et al. Plant growth- promoting rhizobacterial biofertilizers for crop production: the past, present, and future. Frontiers in Plant Science, 2022,13:1002448. |
[4] | Malik L, Sanaullah M, Mahmood F, et al. Unlocking the potential of co-applied biochar and plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture under stress conditions. Chemical and Biological Technologies in Agriculture, 2022, 9 (1):58. |
[5] | Qiu Z G, Paungfoo-Lonhienne C, Ye J, et al. Biofertilizers can enhance nitrogen use efficiency of sugarcane. Environmental Microbiology, 2022, 24(8):3655-3671. |
[6] | Wang L, Chen H R, Wu J Z, et al. Effects of magnetic biochar- microbe composite on Cd remediation and microbial responses in paddy soil. Journal of Hazardous Materials, 2021,414:125494. |
[7] | 张猛, 王琼, 冯发运, 等. 植物内生特基拉芽胞杆菌的分离、鉴定及防治西瓜枯萎病效果. 中国生物防治学报, 2017, 33(3):371-377. |
[8] | Širić I, Eid E M, Taher M A, et al. Combined use of spent mushroom substrate biochar and PGPR improves growth, yield, and biochemical response of Cauliflower (Brassica oleracea var. botrytis): a preliminary study on greenhouse cultivation. Horticulturae, 2022, 8(9):830. |
[9] | Lin S Y, Wang W Q, Penuelas J, et al. Combined slag and biochar amendments to subtropical paddy soils lead to a short-term change of bacteria community structure and rise of soil organic carbon. Applied Soil Ecology, 2022,179:104593. |
[10] | Wu C C, Zhi D, Yao B, et al. Immobilization of microbes on biochar for water and soil remediation:A review. Environmental Research, 2022,212:113226. |
[11] | Liu Q Y, Wang Y R, Sun S, et al. A novel chitosan-biochar immobilized microorganism strategy to enhance bioremediation of crude oil in soil. Chemosphere, 2023,313:137367. |
[12] | Qi X, Gou J L, Chen X M, et al.Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil. Journal of Hazardous Materials, 2021,401:123823. |
[13] | 曹帅, 李金梦, 王蓝琴, 等. 贝莱斯芽孢杆菌B4-7联合水稻秸秆生物炭对烟草青枯病的防治作用. 南方农业学报, 2022, 53(9):2568-2574. |
[14] | Huang S W, Chen X, Wang D D, et al. Bio-reduction and synchronous removal of hexavalent chromium from aqueous solutions using novel microbial cell/algal-derived biochar particles: Turning an environmental problem into an opportunity. Bioresource Technology, 2020,309:123304. |
[15] | 鲍士旦. 土壤农化分析(3版). 北京: 中国农业出版社, 2000. |
[16] | Bolan N, Hoang S A, Beiyuan J Z, et al. Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 2022, 67(2):150-200. |
[17] | Gou Z C, Zheng H Y, He Z Q, et al. The combined action of biochar and nitrogen-fixing bacteria on microbial and enzymatic activities of soil N cycling. Environmental Pollution, 2023,317:120790. |
[18] | Ren H, Huang B L, Fernández-García V, et al. Biochar and rhizobacteria amendments improve several soil properties and bacterial diversity. Microorganisms, 2020, 8(4):502. |
[19] | Jabborova D, Wirth S, Kannepalli A, et al. Co-inoculation of rhizobacteria and biochar application improves growth and nutrientsin soybean and enriches soil nutrients and enzymes. Agronomy, 2020, 10(8):1142. |
[20] | Haroon U, Liaquat F, Khizar M, et al. Isolation of halotolerant bacteria from rhizosphere of khewra salt mine halophytes and their application to induce salt tolerance in wheat. Geomicrobiology Journal, 2021, 38(9):768-775. |
[21] | Mares-Rodriguez F D, Aréchiga-Carvajal E T, Ruiz-Herrera T J, et al. A new bacterial endosymbiotic relationship in Kluyveromyces marxianus isolated from the mezcal fermentation process. Process Biochemistry, 2023,131:133-143. |
[22] | 董成, 陈智勇, 谢迎新, 等. 生物炭连续施用对农田土壤氮转化微生物及N2O排放的影响. 中国农业科学, 2020, 53(19):4024-4034. |
[23] | 郭书亚, 尚赏, 汤其宁, 等. 不同轮耕方式与生物炭对土壤酶活性、土壤养分及小麦和玉米产量的影响. 作物杂志, 2022 (3):211-217. |
[24] | Solanki M K, Wang Z, Wang F Y, et al. Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria. Sugar Tech, 2017, 19(2):136-147. |
[25] | Wen Z H, Chen Y X, Liu Z Q, et al. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. European Journal of Soil Biology, 2022,113:103448. |
[26] | Ma H, Wei M Y, Wang Z R, et al. Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ 5 loaded on biochar. Journal of Hazardous Materials, 2020,388:122065. |
[27] | Mei C, Wang H, Cai K Z, et al. Characterization of soil microbial community activity and structure for reducing available Cd by rice straw biochar and Bacillus cereus RC-1. Science of the Total Environment, 2022,839:156202. |
[28] | Ding Y, Xiong J S, Zhou B W, et al. Odor removal by and microbial community in the enhanced landfill cover materials containing biochar-added sludge compost under different operating parameters. Waste Management, 2019,87:679-690. |
[29] | Braga J K, Motteran F, Silva E L, et al. Evaluation of bacterial community from anaerobic fluidized bed reactor for the removal of linear alkylbenzene sulfonate from laundry wastewater by 454-pyrosequence. Ecological Engineering, 2015,82:231-240. |
[30] | Ormeño-Orrillo E, Martínez-Romero E.A genomotaxonomy view of the Bradyrhizobium genus. Frontiers in Microbiology, 2019,10:1334. |
[31] | Videira S S, De Araujo J L S, Da Silva Rodrigues L, et al. Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiology Letters, 2009, 293(1):11-19. |
[1] | 陈锦平, 潘丽萍, 邢颖, 廖青, 刘永贤, 车江旅. 外源茉莉酸对小白菜耐硒性及硒积累的作用研究[J]. 作物杂志, 2023, (6): 160166 |
[2] | 焦松林, 任建国, 欧阳湖, 倪显春, 田茂松, 王俊丽. 氮磷钾复合肥与促生菌Bacillus sp. KTS-1-1配施对太子参生理特性、生物量及品质的影响[J]. 作物杂志, 2022, (2): 174181 |
[3] | 王庆彬, 卢洁春, 彭春娥, 孟慧, 刘治国, 王洪凤, 张民. 不同氮量处理配施宛氏拟青霉提取物对小白菜生长和氮素吸收的影响[J]. 作物杂志, 2022, (1): 190195 |
[4] | 陈越,李虎林,朱诗苗,闫寒,郎彬,姬文秀. 产吲哚乙酸(IAA)促生菌的分离鉴定及对烟草种子萌发和幼苗生长发育的影响[J]. 作物杂志, 2020, (2): 176181 |
[5] | 罗娜, 肖海兰, 鲁颂, 等. 辣椒内生固氮菌的分离鉴定与多样性分析[J]. 作物杂志, 2014, (6): 5256 |
[6] | 万涛, 邸伟, 马春梅, 龚振平, 董守坤. 大豆根瘤固氮酶活性与温度关系的研究[J]. 作物杂志, 2012, (6): 5660 |
[7] | 程茁, 杨隆华, 丁伟, 曹丽娟. 氟磺胺草醚对大豆根瘤固氮和蔗糖代谢的影响[J]. 作物杂志, 2011, (6): 2427 |
[8] | 任尚杰, 方伟, 张国敏, 等. 两种浓度营养液下水培生菜和小白菜生长特性及品质研究[J]. 作物杂志, 2011, (3): 4246 |
[9] | 丁伟, 杨隆华, 程茁, 等. 氟磺胺草醚对大豆根瘤固氮酶活性及光合速率的影响[J]. 作物杂志, 2010, (4): 8184 |
[10] | 谭娟. 接种俄罗斯大豆根瘤菌对大豆生长和产量的影响[J]. 作物杂志, 2007, (4): 3637 |
[11] | 傅艳华, 金泽清, 李华东. 大豆施用钼肥效果的研究[J]. 作物杂志, 2000, (5): 1617 |
[12] | 李军雄. 从水稻光合生理角度研究应用耐氨固氮菌效果[J]. 作物杂志, 1992, (4): 3031 |
[13] | 王桂龙. 植物基因工程在农业中的应用[J]. 作物杂志, 1991, (4): 1112 |
[14] | 孟赐福, 水建国, 周梅芳. 红壤稻田种花生增产的技术[J]. 作物杂志, 1990, (4): 3334 |
[15] | 马剑如, 杨富来. 小麦根际联合固氮菌剂应用效果分析[J]. 作物杂志, 1990, (2): 910 |
|