作物杂志,2025, 第3期: 1–10 doi: 10.16035/j.issn.1001-7283.2025.03.001

• 专题综述 •    下一篇

禾本科与豆科饲草作物间套作对饲草品质及氮素吸收影响的研究进展

侯岳1(), 王红亮1, 李杰2, 李春杰1(), 陈范骏1   

  1. 1中国农业大学资源与环境学院/国家农业绿色发展研究院/养分资源高效利用全国重点实验室,100193,北京
    2杭锦后旗现代农业发展中心,015400,内蒙古巴彦淖尔
  • 收稿日期:2024-04-26 修回日期:2024-07-07 出版日期:2025-06-15 发布日期:2025-06-03
  • 通讯作者: 李春杰,主要从事间套作与资源高效利用研究,E-mail:li.chunjie@cau.edu.cn
  • 作者简介:侯岳,主要从事饲草间套作与资源高效利用研究,E-mail:houyueuse@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFD1900300)

Research Advances on the Effects of Cereal/Legume Forage Intercropping on Forage Quality and Nitrogen Uptake

Hou Yue1(), Wang Hongliang1, Li Jie2, Li Chunjie1(), Chen Fanjun1   

  1. 1College of Resources and Environmental Sciences, China Agricultural University / National Academy of Agriculture Green Development / State Key Laboratory of Nutrient Use and Management, Beijing 100193, China
    2Modern Agricultural Development Center of Hangjin Rear Banner, Bayannur 015400, Inner Mongolia, China
  • Received:2024-04-26 Revised:2024-07-07 Online:2025-06-15 Published:2025-06-03

摘要:

优质饲草的缺乏是当前制约饲草产业发展的瓶颈,近年来,国内外关于饲草高效种植模式的研究显著增多,其中禾本科/豆科饲草作物间套作在提高饲草产量、品质和养分吸收利用方面具有明显的优势。但是,不同间套作体系的增产提质效果和养分吸收优势因作物搭配存在差异。因此,本文将禾/豆饲草间套作归纳为以麦类/豆科饲草为主的矮秆饲草间套作和以青贮玉米/豆科为主的高矮秆饲草间套作。结果表明,矮秆饲草间作提高了麦类禾本科饲草的产量、品质和氮素吸收,且提高了大部分豆科饲草的产量和品质;高矮秆饲草间作中产量和品质表现为其中一种作物提高,而另一种作物降低。同时从间作的地上、地下生态位补偿总结了饲草间套作提高产量、品质和氮素吸收利用的种间互作机制,并提出了加强饲草种间互作机理的研究,以及通过因地制宜筛选间作品种及优化条带布置等措施来实现禾、豆饲草产量和品质的协同提高,以明确高产优质高效的饲草间套作体系适宜的作物搭配及其优势。

关键词: 麦类饲草, 青贮玉米, 豆科饲草, 种间互作, 氮素吸收利用

Abstract:

The primary issue preventing the forage sector from growing further at the moment is the scarcity of high-quality fodder. Studies on the production of fodder cropping systems with high yield, high quality, and high nutrient usage efficiency have proliferated in recent years. When compared to solitary crops, it has been demonstrated that intercropping cereals and legumes improves fodder productivity, quality, and nutrient utilization efficiency. The benefits of forage intercropping, however, differed depending on the species mix. Therefore, we classified the cereal/legume forage intercropping systems into two types. One is the short forage intercropping, which is mainly about wheat forage crops, the other is tall/short forage intercropping, which is mainly about silage maize intercropping. The results showed that the short forage intercropping increased the yield, quality and nitrogen uptake of wheat grass forage, and increased the yield and quality of most legume forage; the yield and quality of tall/short forage intercropping were increased in one crop and decreased in the other crop. At the same time, the interspecific interaction mechanism of forage intercropping to improve yield, quality and nitrogen uptake and utilization was summarized in terms of the aboveground and belowground ecological niche compensation of intercropping. It is proposed to strengthen the research on forage interspecific intercropping mechanism and to achieve synergistic increase in yield and quality of cereal and legume forage by screening intercropping varieties and optimizing the arrangement of strips according to local conditions. We aimed to clarify the suitable species combinations and advantages for the forages intercropping with high yield, high quality, and high nutrient efficiency.

Key words: Wheat forage crops, Silage maize, Legume forage, Interspecific interaction, Nitrogen uptake and utilization

表1

矮秆饲草作物间套作下土地利用效率及饲草作物产量及品质

间作体系
Intercropping
system
土地
当量比
LER
相比于单作的变化Changes compared to single cropping (%) 文献
Reference
产量
Yield
粗蛋白
CP
粗灰分
Ash
粗脂肪
EE
中性洗涤纤维
NDF
酸性洗涤纤维
ADF
相对饲喂价值
RFV
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
燕麦/箭筈豌豆
Oat/common vetch
1.76 +83.5 +51.6 -4.5 +2.8 +2.9 +2.5 +3.4 -3.5 [9]
1.19 +17.2 +23.4 +24.0 +9.7 +4.5 +13.5 [10]
1.66 +116.4 +16.1 [11]
+12.9 +50.9 -5.4 +10.0 +2.0 [12]
1.19 +73.8 -16.7 [13]
1.18 +17.2 +39.1 [14]
燕麦/苜蓿
Oat/alfalfa
1.07 +30.2 -9.0 +9.6 -2.4 -2.3 +1.6 +2.0 -5.8 -3.8 +2.3 -3.7 +2.8 +6.1 -3.5 [15]
1.11 +14.4 +6.8 [16]
1.08 +24.7 -8.7 +5.8 -4.6 -7.4 -3.6 +5.7 -0.7 -4.2 -2.3 -5.9 +0.8 +7.6 +2.0 [17]
燕麦/大豆
Oat/soybean
1.56 +24.7 +34.5 [18]
1.24 +19.8 +28.2 [15]
燕麦/绿豆
Oat/mung bean
1.18
+24.8
+10.9












[15]
燕麦/豌豆
Oat/pea
1.20 +29.0 +6.1 [19]
1.27 +34.0 +7.7 +13.2 [20]
黑麦/箭筈豌豆
Rey/common vetch
1.27
+47.0
+18.0
+5.8
-10.5




+4.4
-7.4
+4.0
+17.9
-6.3
+1.2
[21]
小黑麦/苜蓿
Triticale/alfalfa
1.11 +35.1 -6.2 +3.7 -2.0 -1.5 +1.1 +0.4 -4.7 -3.5 +1.5 -2.5 +2.2 +5.0 -2.5 [22]
1.09 +24.1 -0.5 7.4 0.5 -5.9 -2.0 +7.3 +0.7 -9.3 -3.9 -4.6 +1.7 +12.7 -4.4 [17]
大麦/豌豆
Barley/pea

-6.6
+8.3
-10.9
+2.8
-2.0
-4.5
+4.1
[23]

表2

高矮秆饲草作物间套作下土地利用效率及饲草作物产量及品质

间作体系
Intercropping
system
土地
当量比
LER
相比于单作的变化Change compared to sole crops (%) 文献
Reference
产量
Yield
粗蛋白
CP
粗灰分
Ash
粗脂肪
EE
中性洗涤纤维
NDF
酸性洗涤纤维
ADF
相对饲喂价值
RFV
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
禾本科
Cereal
豆科
Legume
青贮玉米/拉巴豆
Silage maize/
lablab bean
+21.1 +18.0 +15.1 +11.5 -3.0 +2.0 +2.6 [27]
+8.9 +23.5 +11.8 +2.9 -8.3 -2.6 +9.8 [28]
+41.8 +78.7 +16.6 +69.6 -9.7 -11.2 +17.2 [29]
青贮玉米/秣食豆
Silage maize/
fodder soybean


+6.3

+15.4

+9.6

+0.3

-5.3

+1.1

+5.2

[28]

青贮玉米/苜蓿
Silage maize/
alfalfa
1.34

-31.5



+30.7





+6.8

+4.7

-7.6

[30]

玉米/苜蓿
Maize/alfalfa
1.46 -2.1 +106.0 [31]
1.59 -6.0 +132.3 [32]
1.10 +19.3 -3.5 [33]
1.02 +27.8 -17.0 +7.6 -5.6 -2.5 +2.9 +1.5 -6.5 -5.2 +5.1 -3.8 +5.7 +8.0 -7.4 [22]
1.12 -0.2 +15.1 [34]
1.05 +18.8 -9.4 +7.3 -11.0 -1.2 -5.9 +4.4 +1.1 -4.1 +5.3 -4.4 +5.1 +7.2 -7.0 [22]
玉米/大豆
Maize/soybean
1.62 +30.4 +39.1 -1.5 +5 -16.5 -0.8 +6.9 [35]
1.93 +143.8 +51.5 +26.6 -3.0 +12.0 +0.2 [36]
玉米/豇豆
Maize/cowpea
1.11 +8.0 +14.5 [37]
+73.4 +6.2 -7.6 [38]
甜高粱/苜蓿
Sweet sorghum/
alfalfa
1.01 +25.7 -17.9 +1.1 -6.4 +1.9 -3.3 +2.2 -9.1 -3.3 +5.8 -1.6 +6.3 +4.5 -8.3 [22]
1.04 +17.6 -9.8 +4.8 -12.6 +0.4 -6.0 +8.0 +0.7 -4.2 +7.1 -3.1 +6.6 +6.6 -9.2 [17]
甜高粱/拉巴豆
Sweet sorghum/
lablab bean


+29.3

+36.2

+19.7

+21.0

-7.2

-2.6

+9.6

[39]

图1

禾/豆饲草间套作提高产量、品质和氮素吸收利用的生态学机制

表3

饲草作物间套作的氮素吸收效率及对饲草作物氮素吸收量的影响

间作类型
Intercropping
type
间作体系
Intercropping
system
氮素吸收
当量比
NER
氮素吸收量相比于单作的变化
N uptake change compared to single cropping (%)
文献
Reference
禾本科Cereal 豆科Legume
矮秆饲草间套作
Short forage intercropping
燕麦/箭筈豌豆 1.23 +59.2 +11.4 [58]
燕麦/箭筈豌豆 1.39 +77.3 -38.5 [59]
燕麦/箭筈豌豆 1.31 +97.8 -36.0 [60]
燕麦/箭筈豌豆 1.45 +57.9 +86.1 [25]
燕麦/箭筈豌豆 1.44 +128.1 -39.3 [26]
燕麦/箭筈豌豆 1.42 +54.8 +36.9 [61]
燕麦/苜蓿 1.19 +21.6 +16.6 [16]
燕麦/苜蓿 1.03 +14.0 -4.6 [62]
燕麦/苜蓿 1.01 +7.6 -6.6 [17]
燕麦/绿豆 1.17 +23.1 +11.7 [63]
燕麦/绿豆 1.12 +31.7 -11.2 [64]
燕麦/豌豆 1.02 +2.9 +1.4 [20]
燕麦/豌豆 0.96 +21.4 -29.6 [65]
小黑麦/苜蓿 1.06 +18.2 -2.6 [62]
小黑麦/苜蓿 1.01 +8.9 -7.8 [17]
小黑麦/羽扇豆 1.32 +105.6 -40.3 [66]
大麦/豌豆 1.28 +70.8 -14.4 [67]
高矮秆饲草间套作
Tall/short forage intercropping
玉米/苜蓿 1.03 +12.1 -3.0 [62]
玉米/苜蓿 0.97 +5.1 -11.7 [17]
玉米/苜蓿 1.26 -1.4 +60.2 [57]
玉米/苜蓿 1.19 -15.0 +60.8 [34]
玉米/苜蓿 +8.6 -1.6 [30]
玉米/苜蓿 +84.5 [68]
玉米/苜蓿 +13.0 [69]
玉米/大豆 1.08 +30.3 -20.2 [70]
玉米/大豆 1.04 +7.8 -0.4 [71]
玉米/大豆 1.59 +68.4 +49.9 [72]
玉米/大豆 1.08 +6.2 +10.0 [73]
玉米/大豆 +20.4 -16.3 [74]
高粱/苜蓿 1.02 +11.4 -4.5 [62]
高粱/苜蓿 0.96 +5.3 -13.4 [17]
高粱/苜蓿 +21.3 -1.2 [75]
高粱/大豆 1.24 +64.4 -16.8 [76]
[1] 郑海霞, 尤飞, 罗其友, 等. 面向2050年我国农业资源平衡与国际进口潜力研究. 中国工程科学, 2022, 24(1):20-28.
doi: 10.15302/J-SSCAE-2022.01.003
[2] 中商产业研究院. 2022年1-4月中国牧草及饲料原料进口情况分析:苜蓿干草进口量增长27.4%. (2022-05-31) [2024-04-20]. https://www.askci.com/news/chanye/20220531/0925151873640.shtml.
[3] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24(4):403-415.
[4] Li Q Z, Sun J H, Wei X J, et al. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean,wheat and barley. Plant and Soil, 2010, 339(1/2):147-161.
[5] Van der Werf W, Li C J, Cong W F, et al. Intercropping enables a sustainable intensification of agriculture. Frontiers of Agricultural Science and Engineering, 2020, 7(3):254-256.
doi: 10.15302/J-FASE-2020352
[6] Sun B R, Peng Y, Yang H Y, et al. Alfalfa (Medicago sativa L.)/maize (Zea mays L.) intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China. PLoS ONE, 2014, 9(10):e110556.
[7] Dordas C A, Lithourgidis A S. Growth, yield and nitrogen performance of faba bean intercrops with oat and triticale at varying seeding ratios. Grass and Forage Science, 2011, 66(4):569-577.
[8] Javanmard A, Nasiri Y, Shekari F. Competition and dry matter yield in intercrops of barley and legume for forage. Albanian Journal of Agricultural Sciences, 2014, 13(1):22-32.
[9] Demie D T, Döring T F, Finckh M R, et al.Mixture×genotype effects in cereal/legume intercropping. Frontiers in Plant Science, 2022,13:846720.
[10] Thompson D J, Stout D G, Moore T. Forage production by four annual cropping sequences emphasizing barley under irrigation in southern interior British Columbia. Canadian Journal of Plant Science, 1992, 72(1):181-185.
[11] Li Q, Zeng T, Hu Y, et al. Effects of soybean density and sowing time on the yield and the quality of mixed silage in corn-soybean strip intercropping system. Fermentation, 2022, 8(4):140-154.
[12] 向洁, 王富强, 郭宝光, 等. 西藏河谷区燕麦与箭筈豌豆混间作对产量和营养品质的影响. 浙江大学学报(农业与生命科学版), 2018, 44(5):555-564.
[13] Li R, Zhang Z X, Tang W, et al. Effect of row configuration on yield and radiation use of common vetch-oat strip intercropping on the Qinghai-Tibetan plateau. European Journal of Agronomy, 2021,128:126290.
[14] 渠佳慧, 王春梅, 吴鹏博, 等. 燕麦间作箭筈豌豆对饲草产质量及土壤生物学性状的影响. 内蒙古农业大学学报(自然科学版), 2020, 41(1):5-13.
[15] 马怀英, 王上, 杨亚东, 等. 燕麦与豆科作物间作的产量、经济效益与碳足迹分析. 中国农业大学学报, 2021, 26(8):23-32.
[16] 王妍. 紫花苜蓿‖燕麦间作效应及氮素吸收机理研究. 长春:东北师范大学, 2019.
[17] 赵雅姣. 紫花苜蓿/禾本科牧草间作优势及其氮高效机理和土壤微生态效应研究. 兰州:甘肃农业大学, 2020.
[18] 王亚南, 乔月静, 范雅琦, 等. 燕麦与不同作物间作对土壤线虫群落结构及作物产量的影响. 中国生态农业学报(中英文), 2023, 31(4):505-515.
[19] 张丽睿, 柴继宽, 赵桂琴, 等. 施氮制度对燕麦‖豌豆间作体系产量及种间竞争力的影响. 草原与草坪, 2022, 42(4):106-114.
[20] Tsialtas I T, Baxevanos D, Vlachostergios D N, et al. Cultivar complementarity for symbiotic nitrogen fixation and water use efficiency in pea-oat intercrops and its effect on forage yield and quality. Field Crops Research, 2018,226:28-37.
[21] 王富强, 向洁, 郭宝光, 等. 拉萨河谷区箭筈豌豆和黑麦混、间播建植方式研究. 草业学报, 2018, 27(8):39-49.
doi: 10.11686/cyxb2017348
[22] 蔺芳, 刘晓静, 童长春, 等. 间作对不同类型饲料作物光能利用特征及生产能力的影响. 应用生态学报, 2019, 30(10):3452-3462.
[23] Soufan W, Al-Suhaibani N A. Optimizing yield and quality of silage and hay for pea-barley mixtures ratio under irrigated arid environments. Sustainability, 2021, 13(24):13621-13630.
[24] 王旭, 曾昭海, 朱波, 等. 箭筈豌豆与燕麦不同间作混播模式对产量和品质的影响. 作物学报, 2007, 33(11):1892-1895.
[25] 渠佳慧. 燕麦与箭筈豌豆不同行比例间作对饲草产质量及土壤性状的影响. 呼和浩特:内蒙古农业大学, 2017.
[26] Wang S, Chen G, Yang Y D, et al. Sowing ratio determines forage yields and economic benefits of oat and common vetch intercropping. Agronomy Journal, 2021, 113(3):2607-2617.
[27] 董姗. 密度和施氮对河西灌区青贮玉米/拉巴豆间作体系饲草产量、品质和水分利用的影响. 兰州:兰州大学, 2021.
[28] Zhang H X, Shi W, Ali S, et al. Legume/maize intercropping and N application for improved yield,quality,water and N utilization for forage production. Agronomy, 2022, 12(8):1777-1798.
[29] 董志晓, 何润濠, 况鉴洋, 等. 成都平原青贮玉米间作拉巴豆对混合饲草产量及品质的影响. 草业科学, 2021, 38(8):1587-1595.
[30] 许瑞轩. 华北平原紫花苜蓿套作青贮玉米高产高效利用研究. 北京: 中国农业大学, 2021.
[31] Zhang H L, Wang X Y, Gao Y Z, et al. Short-term N transfer from alfalfa to maize is dependent more on arbuscular mycorrhizal fungi than root exudates in N deficient soil. Plant and Soil, 2020, 446(1/2):23-41.
[32] 孙宝茹. 玉米/紫花苜蓿间作磷素高效吸收利用的根系—土壤互作机理. 长春:东北师范大学, 2017.
[33] Sun T, Li Z Z, Wu Q, et al. Effects of alfalfa intercropping on crop yield, water use efficiency, and overall economic benefit in the corn belt of Northeast China. Field Crops Research, 2018,216:109-119.
[34] Zhang G G, Yang Z B, Dong S T. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Research, 2011, 124(1):66-73.
[35] Soe Htet M N, Hai J B, Bo P T, et al. Evaluation of nutritive values through comparison of forage yield and silage quality of mono-cropped and intercropped maize-soybean harvested at two maturity stages. Agriculture, 2021, 11(5):452-466.
[36] Zeng T R, Wu Y S, Xin Y F, et al. Silage quality and output of different maize-soybean strip intercropping patterns. Fermentation, 2022, 8(4):174-190.
[37] Roohi M, Arif M S, Guillaume T, et al. Role of fertilization regime on soil carbon sequestration and crop yield in a maize- cowpea intercropping system on low fertility soils. Geoderma, 2022,428:116152.
[38] Azim A, Khan A G, Nadeem M A, et al. Influence of maize and cowpea intercropping on fodder production and characteristics of silage. Asian-Australasian Journal of Animal Sciences, 2000, 13 (6):781-784.
[39] 董志晓, 何润濠, 况鉴洋, 等. 成都平原甜高粱间作拉巴豆对混合饲草产量及品质的影响. 草地学报, 2021, 29(7):1578-1583.
doi: 10.11733/j.issn.1007-0435.2021.07.026
[40] Armstrong K L, Albrecht K A, Lauer J G, et al. Intercropping corn with lablab bean, velvet bean, and scarlet runner bean for forage. Crop Science, 2008, 48(1):371-379.
[41] Zaeem M, Nadeem M, Pham T H, et al. Corn-soybean intercropping improved the nutritional quality of forage cultivated on podzols in boreal climate. Plants, 2021, 10(5):1015-1037.
[42] Sun B R, Gao Y Z, Yang H J, et al. Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil. Plant and Soil, 2018, 439(1/2):145-161.
[43] Xu R X, Zhao H M, Liu G B, et al. Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat-maize system in the North China plain. Agricultural Systems, 2022,195:103305-103317.
[44] Fischer J, Böhm H, Heβ J. Maize-bean intercropping yields in Northern Germany are comparable to those of pure silage maize. European Journal of Agronomy, 2020,112:125947.
[45] Maw Ni Soe Htet. 玉米(Zea mays L.)与大豆(Glycine max)不同间作模式的资源利用率及饲草产量与饲料品质的研究. 杨凌:西北农林科技大学, 2017.
[46] Kizilsimsek M, Gunaydin T, Aslan A, et al. Improving silage feed quality of maize intercropped with some legumes. Türk Tarım ve Doğa Bilimleri Dergisi, 2020, 7(1):165-169.
[47] Horvatić I, Svečnjak Z, Maćešić D, et al. Influence of intercropping maize with cowpea and fertilization with clinoptilolite on forage yield and quality. Journal of Environmental Science and Engineering (B), 2018, 7(9):337-343.
[48] Uher D, Horvatic I, Jares D, et al. Influence of intercropping maize with cowpea on forage yield and quality. Direct Research Journal of Agriculture and Food Science, 2019, 7(4):77-80.
[49] 蒋紫薇, 刘桂宇, 安昊云, 等. 种植密度与施氮对玉米/秣食豆间作系统饲草产量、品质和氮肥利用的影响. 草业学报, 2022, 31(7):157-171.
doi: 10.11686/cyxb2021251
[50] Zhang G G, Zhang C Y, Yang Z B, et al. Root distribution and N acquisition in an alfalfa and corn intercropping system. Journal of Agricultural Science, 2013, 5(9):128-142.
[51] Lin C H, McGraw R L, George M F, et al. Shade effects on forage crops with potential in temperate agroforestry practices. Agroforestry Systems, 1998, 44(2):109-119.
[52] 覃凤飞, 崔棹茗, 魏明, 等. 越夏期遮阴对3个不同紫花苜蓿品种生长特性的影响. 草地学报, 2014, 22(1):101-106.
doi: 10.11733/j.issn.1007-0435.2014.01.016
[53] Li C J, Hoffland E, Kuyper T W, et al. Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 2020,113:125987.
[54] Yu Y, Stomph T J, Makowski D, et al. A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for managemen. Field Crops Research, 2016,198:269-279.
[55] Wu K X, Jiang C H, Zhou S Y, et al. Optimizing arrangement and density in maize and alfalfa intercropping and the reduced incidence of the invasive fall armyworm (Spodoptera frugiperda) in southern China. Field Crops Research, 2022,287:108637.
[56] Wahla I H, Ahmad R I A Z, Ehsanullah A A, et al. Competitive functions of components crops in some barley based intercropping systems. International Journal Agriculture & Biology, 2009, 11 (1):69-72.
[57] 张华亮. 玉米/紫花苜蓿间作氮素高效吸收利用的根系—土壤互作机理. 长春:东北师范大学, 2020.
[58] 韩冬雨, 李立军, 赵鑫瑶, 等. 施氮对燕麦间作箭筈豌豆饲草产量和品质及水氮利用效率的影响. 西北农林科技大学学报(自然科学版), 2023, 51(10):40-51.
[59] 蒋海亮. 黄土旱塬区秋播燕麦与箭筈豌豆间作系统的生产力和资源利用研究. 兰州:兰州大学, 2013.
[60] 柴继宽, 赵桂琴, 张丽睿, 等. 施氮及间作对燕麦干物质积累、分配和氮素吸收利用的影响. 中国草地学报, 2023, 45(1):88-98.
[61] 杨金虎, 李立军, 张艳丽. 等. 科尔沁沙地燕麦间作箭筈豌豆与施肥对饲草养分累积、产量及水分利用的影响. 西北农业学报, 2024, 33(1):121-132.
[62] 蔺芳. 紫花苜蓿//禾本科牧草间作提高其生产潜力和营养品质机理及家畜对其利用效果研究. 兰州:甘肃农业大学, 2019.
[63] 钱欣, 臧华栋, 葛军勇, 等. 东北地区西部不同燕麦带状间作模式的产量及氮素吸收效应. 麦类作物学报, 2017, 37(8):1105-1111.
[64] 冯晓敏. 燕麦‖大豆、 燕麦‖绿豆系统生理生态机制研究. 北京: 中国农业大学, 2015.
[65] Cowell L E, Bremer E, Kessel C V. Yield and N2 fixation of pea and lentil as affected by intercropping and N application. Canadian Journal of Soil Science, 1989, 69(2):243-251.
[66] Wysokiński A, Kuziemska B. The sources of nitrogen for yellow lupine and spring triticale in their intercropping. Plant,Soil and Environment, 2019, 65(3):145-151.
[67] Hauggaard-Nielsen H, Gooding M, Ambus P, et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research, 2009, 113(1):64-71.
[68] Nasar J, Shao Z, Arshad A, et al. The effect of maize-alfalfa intercropping on the physiological characteristics, nitrogen uptake and yield of maize. Plant Biology, 2020, 22(6):1140-1149.
[69] 许芳维. 不同密度玉米与苜蓿间作对玉米生产潜能的研究. 哈尔滨:东北农业大学, 2021.
[70] 刘均霞, 陆引罡, 远红伟, 等. 玉米/大豆间作条件下作物根系对氮素的吸收利用. 华北农学报, 2008, 23(1):173-175.
doi: 10.7668/hbnxb.2008.01.038
[71] Du Q, Zhou L, Chen P, et al. Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input. The Crop Journal, 2020, 8 (1):140-152.
[72] Raza M A, Feng L Y, Van der Werf W, et al. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food and Energy Security, 2020, 9(2):e199.
[73] Fu Z D, Li Z, Ping C, et al. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community. Journal of Integrative Agriculture, 2019, 18(9):2006-2018.
[74] Wang G H, Sheng L C, Zhao D, et al. Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system. Frontiers in Plant Science, 2016,7:1901-1918.
[75] 李海. 苜蓿与禾本科作物间混作增产机制. 呼和浩特:内蒙古农业大学, 2005.
[76] Baker C M, Blamey F P C. Nitrogen fertilizer effects on yield and nitrogen uptake of sorghum and soybean,grown in sole cropping and intercropping systems. Field Crops Research, 1985,12:233-240.
[77] Gebru H. A review on the comparative advantages of intercropping to mono-cropping system. Journal of Biology,Agriculture and Healthcare, 2015, 5(9):1-13.
[78] Wang L Y, Hou B C, Zhang D S, et al. The niche complementarity driven by rhizosphere interactions enhances phosphorus-use efficiency in maize/alfalfa mixture. Food and Energy Security, 2020, 9(4):e252.
[79] Chen B J W, Xu C, Liu M S, et al. Neighbourhood-dependent root distributions and the consequences on root separation in arid ecosystems. Journal of Ecology, 2020, 108(4):1635-1648.
[80] 汪雪, 刘晓静, 赵雅姣, 等. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究. 草业学报, 2021, 30(8):73-85.
doi: 10.11686/cyxb2021037
[81] 王新宇, 高英志. 禾本科/豆科间作促进豆科共生固氮机理研究进展. 科学通报, 2020, 65(增1):142-149.
[82] Pirhofer-Walzl K, Rasmussen J, Hogh-Jensen H, et al. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant and Soil, 2012, 350(1/2):71-84.
[83] Frankow-Lindberg B E, Dahlin A S. N2 fixation,N transfer,and yield in grassland communities including a deep-rooted legume or non-legume species. Plant and Soil, 2013, 370(1/2):567-581.
[1] 王丽萍, 白岚方, 王天昊, 王宵璇, 白云鹤, 王玉芬. 不同施氮水平对青贮玉米植株氮素积累和转运的影响[J]. 作物杂志, 2023, (4): 165–173
[2] 常青, 李立军, 渠佳慧, 张艳丽, 韩冬雨, 赵鑫瑶. 土默川平原麦后复种饲用玉米‖油菜模式的增产优势及氮素利用效率[J]. 作物杂志, 2023, (3): 167–174
[3] 孟亚轩, 姚旭航, 周宝元, 刘颖慧, 袁进成, 马玮, 赵明. 青贮玉米混合青贮研究进展[J]. 作物杂志, 2023, (2): 24–29
[4] 许瀚林,刘瑶,袁晓峰,潘婕,瓮巧云,吕爱枝,刘颖慧. 气候变化对冀西北青贮玉米种植布局影响的预测[J]. 作物杂志, 2020, (1): 124–129
[5] 白岚方,张向前,王瑞,王雅楠,叶雪松,王玉芬,李娟,张德健. 不同玉米品种光合特性及青贮产量品质的差异性研究[J]. 作物杂志, 2020, (1): 154–160
[6] 庄克章,吴荣华,张春艳,徐立华,徐相波,丁一,王振南. 种植密度对不同类型玉米青贮产量和营养价值的影响[J]. 作物杂志, 2019, (6): 140–144
[7] 吴建忠,李绥艳,林红,马延华,潘丽艳,李东林,孙德全. 青贮玉米品质性状遗传变异及主成分分析[J]. 作物杂志, 2019, (3): 42–48
[8] 高文俊,杨国义,高新中,玉柱,许庆方,原向阳,孙耀武. 氮磷钾肥对青贮玉米产量和品质的影响[J]. 作物杂志, 2018, (5): 144–149
[9] 刘颖慧,郭明,贾树利,尹建国. 影响青贮玉米品质因素研究进展[J]. 作物杂志, 2018, (2): 6–10
[10] 兰宏亮, 王海波, 付铁梅, 等. 种植密度与化学调控对夏播青贮玉米产量的影响[J]. 作物杂志, 2014, (2): 80–83
[11] 杨国航, 吴金锁, 张春原, 等. 青贮玉米品种利用现状与发展[J]. 作物杂志, 2013, (2): 13–16
[12] 杨小辉, 王春宏, 姜佰文. 氮素调控对复种条件下饲用小黑麦-青贮玉米产量和品质的影响[J]. 作物杂志, 2011, (4): 70–73
[13] 李晶, 李伟忠, 吉彪, 等. 混播方式对青贮玉米产量和饲用品质的影响[J]. 作物杂志, 2010, (3): 100–103
[14] 杜桂娟, 曹敏建, 马凤江, 等. 播期对下茬青贮玉米物质生产特性的影响及气象条件分析[J]. 作物杂志, 2009, (2): 36–40
[15] 王巍, 李春秋, 祁永红, 等. 青贮玉米龙辐玉6号的选育[J]. 作物杂志, 2009, (1): 105–105
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!