作物杂志,2025, 第6期: 121–131 doi: 10.16035/j.issn.1001-7283.2025.06.015

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

有机肥部分替代氮肥对豫东冬小麦生长及土壤特性的影响

李青欣1(), 金秀良2, 宋晓3, 张珂珂3, 郭腾飞3, 黄绍敏3, 岳克3, 丁世杰3, 黄明1(), 李友军1()   

  1. 1 河南科技大学农学院/河南现代农业试验基地, 471023, 河南洛阳
    2 中国农业科学院作物科学研究所, 100081, 北京
    3 河南省农业科学院植物营养与资源环境研究所, 450002, 河南郑州
  • 收稿日期:2024-12-16 修回日期:2025-01-04 出版日期:2025-12-15 发布日期:2025-12-12
  • 通讯作者: 黄明,主要从事作物栽培和土壤养分演变研究,E-mail:huangming_2003@126.com;李友军为共同通信作者,主要从事作物栽培和土壤养分演变研究,E-mail:lyj@haust.edu.cn
  • 作者简介:李青欣,主要从事作物栽培与土壤肥力研究,E-mail:lqx686826@163.com
  • 基金资助:
    国家重点研发计划(2023YFD1902705-1);国家重点研发计划(2022YFD2300802)

Effects of Partial Replacement of Nitrogen Fertilizer with Organic Fertilizer on Growth of Winter Wheat and Soil Properties in Eastern Henan

Li Qingxin1(), Jin Xiuliang2, Song Xiao3, Zhang Keke3, Guo Tengfei3, Huang Shaomin3, Yue Ke3, Ding Shijie3, Huang Ming1(), Li Youjun1()   

  1. 1 College of Agriculture, Henan University of Science and Technology / Henan Modern Agricultural Experimental Base, Luoyang 471023, Henan, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 Institute of Plant Nutrition and Resource Environment, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2024-12-16 Revised:2025-01-04 Online:2025-12-15 Published:2025-12-12

摘要:

以小麦品种新麦45为材料,设置农户常规施肥处理(FP)、有机肥替代20%(MS20)、30%(MS30)、40%(MS40)和50%(MS50)氮肥5个处理,研究有机肥替代氮肥对豫东地区土壤特性、冬小麦根系性状、干物质、氮素及产量相关指标等的影响。结果表明,相较于FP处理,有机肥替代氮肥可显著提高土壤养分含量,MS40处理使土壤有机质、有效磷和速效钾含量分别显著增加5.93%、13.74%和12.11%;MS50处理使有机质、全氮、碱解氮、有效磷和速效钾分别显著增加7.27%、19.63%、12.21%、15.59%和23.80%;MS30处理使土壤脲酶活性提高6.98%、脱氢酶活性提高44.01%,同时显著改善了小麦根系性状指标;MS30处理促进了产量增加,在2022-2023年和2023-2024年生长季产量分别提高15.42%和18.43%;此外,MS30处理还提高了拔节期、开花期和成熟期的干物质积累量,提高了地上部氮素积累量及转运效率,并在氮素利用效率、氮素吸收效率和氮肥偏生产力上均优于FP处理。从经济效益的角度考虑,有机肥替代30%氮肥处理虽高于常规施肥处理,但较有机肥替代20%氮肥处理略有降低,故推荐有机肥替代20%和30%氮肥处理。

关键词: 冬小麦, 有机肥, 土壤特性, 干物质积累与转运, 产量, 氮效率, 经济效益

Abstract:

Taking winter wheat variety Xinmai 45 as the experimental material, five treatments were established: conventional farmer fertilization (FP), and organic fertilizer replacing 20% (MS20), 30% (MS30), 40% (MS40), and 50% (MS50) of nitrogen fertilizer. This study investigated the effects of organic fertilizer substitution for nitrogen fertilizer on soil properties, winter wheat root characteristics, dry matter, nitrogen, and yield-related indicators in the Eastern Henan. The results showed that compared with the FP treatment, organic fertilizer substitution significantly increased soil nutrient content, MS40 treatment significantly increased soil organic matter, available P, and available K by 5.93%, 13.74%, and 12.11%, respectively. MS50 treatment significantly increased organic matter, total N, alkali-hydrolyzable N, available P, and available K by 7.27%, 19.63%, 12.21%, 15.59%, and 23.80%, respectively. MS30 treatment increased soil urease activity by 6.98% and dehydrogenase activity by 44.01%, and significantly improved winter wheat root characteristics. MS30 treatment promoted yield increase, with yield increasing by 15.42% and 18.43% in 2022-2023 and 2023-2024 growing seasons, respectively. Furthermore, MS30 treatment also increased dry matter accumulation at jointing, flowering, and maturity stages, enhanced aboveground nitrogen accumulation and translocation efficiency, and was superior to the FP treatment in nitrogen use efficiency, nitrogen uptake efficiency, and partial productivity of nitrogen fertilizer. From the perspective of economic benefit, although the economic benefit of organic fertilizer replacing 30% nitrogen fertilizer treatment was higher than that of conventional fertilization, it was slightly lower than that of organic fertilizer replacing 20% nitrogen fertilizer treatment. Therefore, organic fertilizer replacing 20% and 30% nitrogen fertilizer treatments are recommended.

Key words: Winter wheat, Organic fertilizer, Soil properties, Dry matter accumulation and translocation, Yield, Nitrogen efficiency, Economic benefit

表1

不同处理下的有机肥和氮肥用量

处理
Treatment
替代氮肥比例
Replacement nitrogen
fertilizer ratio (%)
基肥量Basal fertilizer amount (kg/hm2) 追肥量Topdressing fertilizer amount (kg/hm2)
有机肥
Organic fertilizer
N P2O5 K2O N
FP 0 0 120.0 96.0 105.0 120
MS20 20 1920 72.0 76.8 57.0 120
MS30 30 2880 48.0 67.2 33.0 120
MS40 40 3840 24.0 57.6 9.0 120
MS50 50 4800 0.0 48.0 0.0 120

表2

有机肥部分替代氮肥对豫东土壤养分含量的影响

处理
Treatment
有机质
Organic matter (g/kg)
全氮
Total N (g/kg)
碱解氮
Alkali-hydrolyzable N (mg/kg)
有效磷
Available P (mg/kg)
速效钾
Available K (mg/kg)
FP 10.45±1.25b 1.07±1.83c 103.12±4.17c 23.79±0.93c 139.90±6.14cd
MS20 10.91±1.30b 1.17±1.64b 111.77±2.89b 24.04±1.14bc 140.50±6.19c
MS30 10.96±0.92b 1.20±2.13ab 111.52±4.24b 25.61±1.89b 147.41±9.18c
MS40 11.07±1.21a 1.10±0.78c 103.84±4.17c 27.06±5.02a 156.84±1.61b
MS50 11.21±0.85a 1.28±1.33a 115.71±3.50a 27.50±3.93a 173.19±11.74a

图1

有机肥部分替代氮肥对豫东土壤脲酶和脱氢酶活性的影响 不同小写字母表示处理间差异显著(P < 0.05)。下同。

图2

有机肥部分替代氮肥对豫东冬小麦根系特征的影响

图3

有机肥部分替代氮肥对豫东冬小麦干物质积累量的影响

表3

有机肥部分替代氮肥对豫东冬小麦地上部干物质积累与转运的影响

生长季
Growth
season
处理
Treatment
花前干物质Pre-anthesis dry matter 花后干物质Post-anthesis dry matter
转运量
Translocation amount
(kg/hm2)
转运率
Translocation
rate (%)
对籽粒贡献率
Contribution rate
to grain (%)
积累量
Accumulation amount
(kg/hm2)
对籽粒贡献率
Contribution rate
to grain (%)
2022-2023 FP 2251.03c 24.36b 30.90c 5034.54b 69.10a
MS20 2636.16a 26.29a 30.74c 5938.85a 69.26a
MS30 2634.48a 23.70c 30.66c 5958.04a 69.34a
MS40 2210.26c 22.63d 31.67b 4769.77c 68.33b
MS50 2315.24b 24.28b 33.16a 4666.75d 66.84c
2023-2024 FP 2329.75b 23.63a 30.16b 5395.33c 69.84b
MS20 2388.68b 21.46c 28.88c 5881.53b 71.12a
MS30 2407.67a 21.04c 28.51c 6038.24a 71.49a
MS40 2356.95b 22.43b 31.11b 5218.05c 68.89b
MS50 2306.97bc 23.97a 33.07a 4669.03d 66.93c

图4

有机肥部分替代氮肥对豫东冬小麦氮素积累量的影响

表4

有机肥部分替代氮肥对豫东冬小麦地上部氮素积累和转运的影响

生长季
Growth
season
处理
Treatment
花前氮素Pre-anthesis N 花后氮素Post-anthesis N
转运量
Translocation
amount (kg/hm2)
转运率
Translocation
rate (%)
对籽粒贡献率
Contribution rate
to grain (%)
积累量
Accumulation
amount (kg/hm2)
对籽粒贡献率
Contribution rate
to grain (%)
2022-2023 FP 100.47c 66.52a 57.87c 60.60b 34.91a
MS20 124.29b 66.63a 60.21b 72.36a 35.06a
MS30 137.73a 66.83a 66.97a 73.68a 35.83a
MS40 89.31d 53.67b 56.38cd 54.73c 34.55a
MS50 88.55d 54.06b 58.18c 46.48d 30.54b
2023-2024 FP 95.12b 54.58ab 57.10a 83.33a 46.70ab
MS20 109.27a 55.76a 55.19b 85.92a 44.02b
MS30 113.04a 56.07a 58.85a 85.99a 43.21b
MS40 89.97c 53.22ab 45.86d 85.70a 48.78a
MS50 80.15c 55.48ab 50.99c 77.03b 49.01a

表5

有机肥部分替代氮肥对豫东冬小麦产量及其构成因素的影响

生长季
Growth season
处理
Treatment
成穗数
Spike number (×104/hm2)
穗粒数
Number of grains per spike
千粒重
1000-grain weight (g)
籽粒产量
Grain yield (kg/hm2)
2022-2023 FP 603.06b 43.72a 33.27b 7284.55b
MS20 609.12b 43.39a 38.17a 8377.36a
MS30 624.27a 42.48a 38.20a 8408.02a
MS40 510.63c 41.61ab 40.60a 7156.23c
MS50 501.54cd 41.78ab 39.20a 6814.87c
2023-2024 FP 606.98b 43.95a 34.86b 7336.75b
MS20 610.20b 42.08a 40.01a 8412.81a
MS30 635.32a 41.56a 38.56a 8688.61a
MS40 590.29c 39.86ab 38.88a 7472.87b
MS50 568.05d 39.02ab 38.02a 6974.01c

表6

有机肥替代部分氮肥对豫东冬小麦氮效率的影响

生长季
Growth
season
处理
Treatment
氮素收获指数
Nitrogen harvest
index
氮素利用效率
Nitrogen use
efficiency (kg/kg)
氮素吸收效率
Nitrogen uptake
efficiency (kg/kg)
氮肥偏生产力
Partial productivity of
nitrogen fertilizer (kg/kg)
2022-2023 FP 0.72ab 34.84d 0.88c 30.36b
MS20 0.72ab 54.54b 1.08a 34.90a
MS30 0.74a 63.23a 1.17a 35.03a
MS40 0.73ab 37.23c 0.91b 29.81b
MS50 0.73ab 33.18d 0.87c 28.39b
2023-2024 FP 0.76a 31.14b 0.92b 30.57b
MS20 0.79a 44.04a 1.05a 35.05a
MS30 0.79a 46.14a 1.07a 36.20a
MS40 0.78a 31.47b 0.93b 31.14b
MS50 0.74b 26.74c 0.88c 29.06b

图5

冬小麦产量、干物质积累转运和氮素营养指标的相关性分析 X1:产量;X2:氮素利用效率;X3:成熟期地上部干物积累量;X4:花前干物质转运量;X5:花前干物质转运量对籽粒贡献率;X6:花后干物质积累量;X7:花后干物质积累量对籽粒贡献率;X8:成熟期地上部氮素积累量;X9:花前氮素转运量;X10:花后氮素积累量。

表7

有机肥替代部分氮肥对豫东冬小麦经济效益的影响

生长季
Growth season
处理
Treatment
产值(元/hm2
Output (yuan/hm2)
肥料投入(元/hm2
Fertilizer cost (yuan/hm2)
经济效益(元/hm2
Economic benefit (yuan/hm2)
产投比
Ratio of output to input
2022-2023 FP 18 939.83b 4001.69 9125.64b 1.93a
MS20 21 781.14a 5947.05 10 021.58a 1.85b
MS30 21 860.85a 6919.74 9128.62b 1.72c
MS40 18 606.20b 7892.42 4901.28c 1.36d
MS50 17 718.66c 9020.87 2885.29d 1.19e
2023-2024 FP 19 809.23b 4001.69 10 075.81a 2.04a
MS20 22 714.58a 5947.05 10 998.88a 1.94a
MS30 23 459.25a 6919.74 10 752.40a 1.85b
MS40 20 176.75b 7892.42 6478.75b 1.47c
MS50 18 829.83b 9020.87 3996.46c 1.27d
[1] 俄胜哲, 丁宁平, 李利利, 等. 黄土高原黑垆土施肥的作物累积产量及土壤肥力贡献. 土壤学报, 2019, 56(1):195-206.
[2] Bai X G, Wang Y A, Huo X X, et al. Assessing fertilizer use efficiency and its determinants for apple production in China. Ecological Indicators, 2019, 104:268-278.
doi: 10.1016/j.ecolind.2019.05.006
[3] 赵凯男, 吴金芝, 李俊红, 等. 秸秆和有机肥配合替代部分化肥提高作物水分利用率减少土壤硝态氮残留. 植物营养与肥料学报, 2022, 28(10):1770-1781.
[4] Zhong X M, Zhou X, Fei J C, et al. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine- transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agriculture,Ecosystems & Environment, 2021, 306:107183.
doi: 10.1016/j.agee.2020.107183
[5] 陈丽, 寇心悦, 党亚爱, 等. 麦季施磷量对小麦-玉米轮作产量及土壤有效磷的影响. 麦类作物学报, 2024, 44(2):185-194.
[6] 柴如山, 安之冬, 马超, 等. 我国主要粮食作物秸秆钾养分资源量及还田替代钾肥潜力. 植物营养与肥料学报, 2020, 26(2):201-211.
[7] 闫丽娟, 李广, 祁小平, 等. 化学氮肥配施有机肥对陇中旱作春小麦氮素利用效率和土壤养分含量的影响. 土壤通报, 2023, 54(6):1361-1371.
[8] 邢鹏飞, 高圣超, 马鸣超, 等. 有机肥替代部分无机肥对华北农田土壤理化特性、酶活性及作物产量的影响. 中国土壤与肥料, 2016(3):98-104.
[9] 宋震震, 李絮花, 李娟, 等. 有机肥和化肥长期施用对土壤活性有机氮组分及酶活性的影响. 植物营养与肥料学报, 2014, 20(3):525-533.
[10] 张向前, 曹承富, 陈欢, 等. 长期定位施肥对砂姜黑土小麦根系性状和根冠比的影响. 麦类作物学报, 2017, 37(3):382-389.
[11] 鲁伟丹, 李俊华, 罗彤, 等. 连续三年不同有机肥替代率对小麦产量及土壤养分的影响. 植物营养与肥料学报, 2021, 27 (8):1330-1338.
[12] 赵亚南, 宿敏敏, 吕阳, 等. 减量施肥下小麦产量、肥料利用率和土壤养分平衡. 植物营养与肥料学报, 2017, 23(4):864-873.
[13] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
[14] 关松荫. 土壤酶及其研究法. 北京: 中国农业出版社, 1986.
[15] 宋晓, 张珂珂, 黄晨晨, 等. 不同氮效率小麦品种根系特征及根际土壤酶活性的分析. 核农学报, 2023, 37(3):617-625.
doi: 10.11869/j.issn.1000-8551.2023.03.0617
[16] 董秀秀, 张智勇, 王绍明, 等. 生物炭添加对新疆连作棉花不同根序根系形态和生理特征的影响. 应用与环境生物学报, 2022, 28(6):1430-1436.
[17] 仝锦, 孙敏, 任爱霞, 等. 高产小麦品种植株干物质积累运转、土壤耗水与产量的关系. 中国农业科学, 2020, 53(17):3467-3478.
doi: 10.3864/j.issn.0578-1752.2020.17.005
[18] 黄明, 吴金芝, 李友军, 等. 耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响. 中国农业科学, 2021, 54(24):5206-5219.
doi: 10.3864/j.issn.0578-1752.2021.24.004
[19] 崔永增, 姚海坡, 李谦, 等. 有机肥部分替代氮肥对优质麦生长、品质和氮效率的影响. 华北农学报, 2023, 38(3):158-166.
doi: 10.7668/hbnxb.20194150
[20] 张军, 胡川, 周起晖, 等. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响. 作物学报, 2025, 51(1):207-220.
doi: 10.3724/SP.J.1006.2025.41025
[21] 李其胜, 赵贺, 汪志鹏, 等. 有机肥替代部分化肥对稻麦轮作土壤养分利用和酶活性的影响. 土壤通报, 2020, 51(4):912-919.
[22] 林治安, 赵秉强, 袁亮, 等. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009, 42(8):2809-2819.
[23] 唐继伟, 徐久凯, 温延臣, 等. 长期单施有机肥和化肥对土壤养分和小麦产量的影响. 植物营养与肥料学报, 2019, 25(11):1827-1834.
[24] Mersi W V, Schinner F. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology & Fertility of Soils, 1991, 11(3):216-220.
[25] 周东兴, 李欣, 宁玉翠, 等. 蚯蚓粪配施化肥对稻田土壤性状和酶活的影响. 东北农业大学学报, 2021, 52(2):25-35.
[26] 马忠明, 杜少平, 王平, 等. 长期定位施肥对小麦玉米间作土壤酶活性的影响. 核农学报, 2011, 25(4):796-801,823.
[27] 丁维婷, 房静静, 武雪萍, 等. 有机肥替代化肥不同比例对黑土土壤微生物学性质及春麦产量品质的影响. 中国土壤与肥料, 2021(2):44-52.
[28] 何艳, 严田蓉, 郭长春, 等. 秸秆还田与栽插方式对水稻根系生长及产量的影响. 农业工程学报, 2019, 35(7):105-114.
[29] 李絮花, 杨守祥, 于振文, 等. 有机肥对小麦根系生长及根系衰老进程的影响. 植物营养与肥料学报, 2005, 11(4):467-472.
[30] 苗果园, 高志强, 张云亭, 等. 水肥对小麦根系整体影响及其与地上部相关的研究. 作物学报, 2002, 28(4):445-450.
[31] 谢军, 赵亚南, 陈轩敬, 等. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49(20):3934-3943.
doi: 10.3864/j.issn.0578-1752.2016.20.008
[32] 张晶, 张定一, 王丽, 等. 不同有机肥和氮磷组合对旱地小麦的增产机理研究. 植物营养与肥料学报, 2017, 23(1):238-243.
[33] 徐明岗, 李冬初, 李菊梅, 等. 化肥有机肥配施对水稻养分吸收和产量的影响. 中国农业科学, 2008, 41(10):3133-3139.
[34] 吴迪, 黄绍文, 金继运. 氮肥运筹、配施有机肥和坐水种对春玉米产量与养分吸收转运的影响. 植物营养与肥料学报, 2009, 15(2):317-326.
[35] 裴雪霞, 党建友, 张定一, 等. 化肥减施下有机替代对小麦产量和养分吸收利用的影响. 植物营养与肥料学报, 2020, 26(10):1768-1781.
[36] 赵隽, 董树亭, 刘鹏, 等. 有机无机肥长期定位配施对冬小麦群体光合特性及籽粒产量的影响. 应用生态学报, 2015, 26 (8):2362-2370.
[37] 张鸣, 高天鹏, 李昂, 等. 畜禽粪肥与化肥配施对春小麦产量和养分吸收利用的影响. 麦类作物学报, 2014, 34(2):216-221.
[38] 任科宇, 段英华, 徐明岗, 等. 施用有机肥对我国作物氮肥利用率影响的整合分析. 中国农业科学, 2019, 52(17):2983-2996.
doi: 10.3864/j.issn.0578-1752.2019.17.007
[39] 李丰丰, 朱红英, 段建设, 等. 肥料无机有机配施对稻茬小麦产量与肥料利用率的影响. 麦类作物学报, 2018, 38(5):593-599.
[1] 高文瑞, 孙艳军, 韩冰, 张晓青, 王显生, 郑子松. 外源有机硒对设施樱桃番茄产量及果实品质的影响[J]. 作物杂志, 2025, (6): 140–147
[2] 陈志豪, 王婷, 常旭虹, 王艳杰, 刘希伟, 杨玉双, 王玉娇, 王德梅, 赵广才. 黄淮冬麦区北片冬小麦产量和品质性状的综合分析[J]. 作物杂志, 2025, (6): 148–155
[3] 兰秀, 梁振华, 杨海霞, 李恒锐, 阮丽霞, 韦婉羚, 陈会鲜, 何洪良, 黄若兰, 赵春慧, 汤丹峰. 甘蔗―凉粉草间作对土壤理化性质及作物产量的影响[J]. 作物杂志, 2025, (6): 156–163
[4] 秦娜娜, 黄淋华, 陈莹, 王胜谋, 谢勇, 缪凯, 李万明, 戚兰. 叶面喷施丙酰芸苔素内酯对夏大豆光合作用、农艺性状和产量的影响[J]. 作物杂志, 2025, (6): 164–171
[5] 王舒琦, 李建波, 刘志萍, 马宇, 渠佳慧, 巴图, 徐寿军. 不同栽培模式下大麦产量与蛋白质形成的生理机制研究[J]. 作物杂志, 2025, (6): 172–180
[6] 钟国兴, 杨欣, 张少搏, 郭维, 杨启航, 李淮源, 陈建军, 陈晓恒, 黄瑞寅, 邓世媛. 化肥减量配施有机肥对植烟土壤及烤烟根系生长的影响[J]. 作物杂志, 2025, (6): 181–188
[7] 颜小文, 梁俊超, 曾攀, 周红英, 王郅琪, 乐美旺, 孙建. 迟播对秋芝麻主要农艺性状及产量的影响[J]. 作物杂志, 2025, (6): 189–194
[8] 张艾英, 赵媛, 刘敏, 薛红桃, 王国梁, 王瑞, 郭二虎. 不同收获时间和收获方式下谷子产量与品质的响应[J]. 作物杂志, 2025, (6): 195–202
[9] 夏玉兰, 赵园园, 李娟, 王德勋, 王婷婷, 杨成伟, 史宏志. 钾肥不同追施比例对红花大金元和云烟300生长、产量及质量的影响[J]. 作物杂志, 2025, (6): 225–230
[10] 王占海, 李龙, 赵海波. 有机无机肥配施对设施土壤环境及番茄品质的影响[J]. 作物杂志, 2025, (6): 231–239
[11] 范国华, 冯晓敏, 高翔, 吕慧卿, 杨静, 张旭丽, 郝志萍, 周忠宇, 张力, 李洪. 垄作覆膜与有机肥施用对小粒黑豆产量形成及土壤有机碳组分的影响[J]. 作物杂志, 2025, (6): 240–247
[12] 高美萍, 陶运荣, 蒋慧萍, 胡一凤, 林志城, 方彦蓉, 欧阳秀, 江文. 不同氮肥处理对荸荠产量、淀粉积累速率及淀粉合成酶活性的影响[J]. 作物杂志, 2025, (6): 248–253
[13] 周婷芳, 李冉, 刘倩倩, 张泽, 王振华, 马宝新, 路明, 张林, 韩业辉, 杨波, 李明顺, 张德贵, 翁建峰, 雍洪军, 徐晶宇, 韩洁楠, 李新海. 东北区118份玉米杂交种萌发期耐盐性分析[J]. 作物杂志, 2025, (5): 1–10
[14] 滕文, 叶凡, 周舟, 王屿乐, 刘立军. 小麦和油菜秸秆还田处理对盐胁迫下水稻产量和品质的影响[J]. 作物杂志, 2025, (5): 11–18
[15] 马强, 李延坤, 王桂娥, 文婷婷, 张天雨, 田纪春, 王延训. 山东省审定彩色小麦品种农艺性状和品质分析及改良方向研究[J]. 作物杂志, 2025, (5): 113–119
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!