作物杂志,2025, 第6期: 181–188 doi: 10.16035/j.issn.1001-7283.2025.06.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

化肥减量配施有机肥对植烟土壤及烤烟根系生长的影响

钟国兴1(), 杨欣2, 张少搏3, 郭维3, 杨启航2, 李淮源4, 陈建军4, 陈晓恒3, 黄瑞寅2, 邓世媛1()   

  1. 1 华南农业大学烟草研究室, 510642, 广东广州
    2 广东中烟工业有限责任公司, 510610, 广东广州
    3 湖南省烟草公司衡阳市公司, 421000, 湖南衡阳
    4 华南农业大学基础实验与实践训练中心, 510642, 广东广州
  • 收稿日期:2024-05-16 修回日期:2024-06-21 出版日期:2025-12-15 发布日期:2025-12-12
  • 通讯作者: 邓世媛,主要从事烟草栽培生理及品质优化调控研究,E-mail:yydsy@scau.edu.cn
  • 作者简介:钟国兴,主要从事烟草栽培研究,E-mail:1940480982@qq.com
  • 基金资助:
    湖南省烟草公司衡阳市公司科技项目(2021430422200010)

Effects of Chemical Fertilizer Reduction Combined with Organic Fertilizer on Tobacco-Planting Soil and Root Growth of Flue-Cured Tobacco

Zhong Guoxing1(), Yang Xin2, Zhang Shaobo3, Guo Wei3, Yang Qihang2, Li Huaiyuan4, Chen Jianjun4, Chen Xiaoheng3, Huang Ruiyin2, Deng Shiyuan1()   

  1. 1 Tobacco Research Laboratory, South China Agricultural University, Guangzhou 510642, Guangdong, China
    2 Guangdong China Tobacco Industry Co., Ltd., Guangzhou 510610, Guangdong, China
    3 Hunan Provincial Tobacco Company Hengyang Company, Hengyang 421000, Hunan, China
    4 Basic Experimental and Practical Training Center, South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2024-05-16 Revised:2024-06-21 Online:2025-12-15 Published:2025-12-12

摘要:

为明确化肥减量配施有机肥对植烟土壤及烤烟根系生长的影响,以烤烟品种云烟87为试验材料,设置常规施肥(CK)、化肥减量10%(T1)、化肥减量10%+芝麻饼肥(T2)、化肥减量10%+腐殖酸肥(T3)、化肥减量10%+芝麻饼肥+腐殖酸肥(T4)5个处理进行大田试验。结果表明,配施有机肥降低了土壤容重,提高了土壤含水率和孔隙度,有机质含量比T1处理增加35.34%~83.70%。T1处理的各土壤酶活性均比CK有所降低,但配施有机肥各处理的土壤酶活性比T1处理明显提高,有的甚至还高于CK,其中T2、T4处理又高于T3处理。与T1处理相比,T3处理的根系生长指标和根系活力略有提高,T2和T4处理则显著增加。土壤容重与土壤酶活性、烤烟根系生长呈负相关,土壤含水率、孔隙度和有机质含量与土壤酶活性呈正相关,土壤酶活性与根系生长指标均呈正相关关系。综上所述,化肥减量情况下通过配施有机肥可以改善植烟土壤理化特性、促进烤烟根系生长,在本试验条件下,配施芝麻饼肥的效果较优。

关键词: 烤烟, 化肥减量, 有机肥, 植烟土壤, 根系生长

Abstract:

To clarify the effects of chemical fertilizer reduction combined with organic fertilizer on the tobacco- planting soil and growth of roots, the tobacco variety Yunyan 87 was used as the experimental material. Five treatments including conventional fertilization (CK), 10% reduction in chemical fertilizer (T1), 10% reduction in chemical fertilizer+sesame cake fertilizer (T2), 10% reduction in chemical fertilizer reduction+humic acid fertilizer (T3), 10% reduction in chemical fertilizer reduction+sesame cake fertilizer+humic acid fertilizer (T4) were set up for field experiments. The results showed that the application of organic fertilizer reduced the soil bulk density, increased the soil moisture content and soil porosity, and increased organic matter content by 35.34%-83.70% compared to the T1 treatment. All of the soil enzyme activities of T1 treatment were lower than those of CK, but the soil enzyme activities of each treatment combined with organic fertilizer were significantly higher than those of T1 treatment, some even higher than CK, while T2 and T4 treatments being higher than T3 treatment. Compared to the T1 treatment, the root growth index and root activity of T3 treatment were slightly improved, while T2 and T4 treatments significantly increased. Soil bulk density was negatively correlated with soil enzyme activities and root growth of flue-cured tobacco, while soil moisture content, soil porosity and organic matter content were positively correlated with soil enzyme activity. Soil enzyme activity was positively correlated with root growth indicators. In summary, under the condition of reduced chemical fertilizer combined with organic fertilizer can improve the physical and chemical properties of tobacco-planting soil and promote the growth of flue-cured tobacco roots. Under the conditions of this experiment, effect of combined with sesame cake fertilizer was better.

Key words: Flue-cured tobacco, Chemical fertilizer reduction, Organic fertilizer, Tobacco-planting soil, Root growth

表1

试验设计及施肥量

处理
Treatment
N P2O5 K2O 芝麻饼肥
Sesame cake
fertilizer
腐殖酸肥
Humic acid
fertilizer
CK 147.0 142.0 483.0 0.0 0.0
T1 132.3 127.8 434.7 0.0 0.0
T2 132.3 127.8 434.7 600.0 0.0
T3 132.3 127.8 434.7 0.0 450.0
T4 132.3 127.8 434.7 600.0 450.0

表2

化肥减量配施有机肥对土壤物理特性及有机质含量的影响

时期
Stage
处理
Treatment
土壤容重
Soil bulk density (g/cm3)
土壤含水率
Soil moisture content (%)
土壤孔隙度
Soil porosity (%)
有机质含量
Organic matter content (g/kg)
移栽后45 d
45 days after transplanting
CK 1.02±0.01b 24.40±2.14ab 61.49±0.46a 27.85±0.88a
T1 1.09±0.02a 22.39±0.28b 58.69±0.61b 23.87±1.98b
T2 1.01±0.01b 28.19±2.32a 63.61±0.48a 30.54±0.64a
T3 0.98±0.02bc 24.90±1.33ab 61.73±0.22a 29.37±0.61a
T4 0.96±0.01c 27.43±1.50ab 63.08±0.82a 28.60±0.44a
移栽后70 d
70 days after transplanting
CK 1.12±0.00a 21.74±1.36a 57.83±0.07b 31.79±2.11a
T1 1.15±0.05a 17.58±3.45b 56.73±2.00b 22.52±0.32b
T2 1.01±0.02b 22.67±1.10a 61.88±0.85a 32.15±0.30a
T3 1.10±0.01ab 20.25±1.65a 58.60±0.34ab 30.81±0.67ab
T4 1.07±0.01ab 23.73±0.92a 59.77±0.43ab 33.76±0.38a
移栽后95 d
95 days after transplanting
CK 1.08±0.00ab 18.92±0.16c 59.29±0.18a 24.42±1.49c
T1 1.11±0.00a 18.21±1.44c 58.17±0.10a 18.90±1.73d
T2 1.04±0.01b 27.31±2.71a 60.71±0.46a 44.86±1.69a
T3 1.07±0.01ab 20.40±0.50bc 59.47±0.35a 34.86±1.22b
T4 1.06±0.02ab 24.35±1.58ab 59.95±0.84a 33.05±0.69b

图1

化肥减量配施有机肥对土壤蛋白酶活性的影响 不同小写字母表示差异达到显著水平(P < 0.05),下同。

图2

化肥减量配施有机肥对土壤CAT活性的影响

图3

化肥减量配施有机肥对土壤ACP活性的影响

图4

化肥减量配施有机肥对土壤SUC活性的影响

图5

化肥减量配施有机肥对土壤脲酶活性的影响

表3

化肥减量配施有机肥对烤烟根系生长的影响

时期
Stage
处理
Treatment
根尖数
Root tip number
根表面积
Root surface area (cm2)
根体积
Root volume (cm3)
根长
Root length (cm)
根干重
Root dry weight (g)
移栽后45 d
45 days after transplanting
CK 7468.33±588.08b 524.27±37.19b 77.54±0.78b 3106.41±182.29c 4.96±0.14d
T1 6473.66±505.20c 490.93±32.24b 75.75±1.62b 3036.79±203.95c 4.93±0.15d
T2 8304.33±798.78a 706.47±56.46a 92.05±3.26a 5612.19±276.59b 7.33±0.17b
T3 7140.33±408.78b 671.66±41.69a 80.95±3.64b 3362.09±232.05c 6.07±0.12c
T4 8410.33±281.76a 655.82±51.10a 85.40±1.53ab 6452.76±482.78a 8.06±0.23a
移栽后70 d
70 days after transplanting
CK 16 863.00±1021.04ab 3257.10±169.10b 351.38±19.27a 8973.32±434.70c 10.24±0.14d
T1 15 439.33±938.74b 2266.73±136.71d 231.21±9.02c 8327.30±239.15c 10.17±0.18d
T2 17 768.87±1135.81a 3513.90±310.87b 364.23±19.30a 10 862.19±665.61b 13.10±0.23b
T3 14 618.00±1058.47c 2635.52±209.24c 288.49±15.39b 10 484.94±599.72b 11.33±0.33c
T4 17 722.80±1119.58a 3993.55±257.92a 391.88±21.20a 12 764.11±777.78a 15.37±0.35a
移栽后95 d
95 days after transplanting
CK 30 673.66±1487.31a 3806.78±265.38c 387.49±3.84b 10 497.15±768.43d 19.23±1.10b
T1 23 336.33±1399.15b 3076.10±237.15d 306.73±6.68c 10 100.53±744.23d 16.26±0.75c
T2 32 021.66±1253.93a 4799.53±317.93b 419.67±7.18b 15 016.46±459.11b 21.53±0.52a
T3 29 417.00±1520.18a 3973.45±216.66c 330.63±4.04c 12 541.41±694.19c 16.93±1.05c
T4 31 880.33±1606.85a 5432.30±450.74a 473.06±12.75a 16 794.07±742.18a 20.86±1.63ab

图6

化肥减量配施有机肥对烤烟根系活力的影响

图7

变量间的皮尔逊相关分析 S-BD:土壤容重;S-TP:土壤孔隙度;S-MC:土壤含水率;S-OM:土壤有机质含量;S-ACPT:土壤蛋白酶;S-CAT:土壤过氧化氢酶;S-ACP:土壤酸性磷酸酶;S-SC:土壤蔗糖酶;S-UE:土壤脲酶;RL:根长;R-SA:根表面积;RV:根体积;R-TN:根尖数;R-DWT:根干重;R-ACT:根系活力。“*”表示显著相关(P < 0.05)。

[1] 付浩然, 李婷玉, 曹寒冰, 等. 我国化肥减量增效的驱动因素探究. 植物营养与肥料学报, 2020, 26(3):561-580.
[2] Lü M R, Li Z P, Che Y P, et al. Soil organic C, nutri ents, microbial biomass, and grain yield of rice (Oryza sativa L.) after 18 years of fertilizer application to an in fertile paddy soil. Biology and Fertility of Soils, 2011, 47(7):777.
doi: 10.1007/s00374-011-0584-y
[3] 宋文博. 减氮施肥对龙江981烤烟生长和质量的影响. 牡丹江:牡丹江师范学院, 2016.
[4] 曹本福, 陆引罡, 刘丽, 等. 减施氮肥下聚天冬氨酸对烤烟生理特性及氮肥去向的影响. 水土保持学报, 2019, 33(5):223-229.
[5] 智磊, 罗定棋, 熊莹, 等. 施氮量对烤烟叶片组织结构和细胞发育的影响. 烟草科技, 2012(7):81-85.
[6] 裴晓东, 李帆, 钟越峰, 等. 施氮量与氮磷钾配比对浏阳烟区烤烟农艺性状与产量的影响. 湖南农业科学, 2014(3):37-39.
[7] 李文卿, 陈顺辉, 李春俭, 等. 不同施氮水平对烤后烟叶中性致香物质含量的影响. 中国烟草学报, 2010, 16(6):14-20.
[8] 赵秀东, 陈晓芳, 袁自然, 等. 有机肥替代对土壤养分的影响. 中国农学通报, 2022, 38 (16):74-80.
doi: 10.11924/j.issn.1000-6850.casb2021-0611
[9] Ye X X, Ye Y, Chai R S, et al. The influence of a year-round tillage and residue management model on soil N fractions in a wheat maize cropping system in central China. Scientific Reports, 2019, 9:4767.
doi: 10.1038/s41598-019-41409-5
[10] 杜为研, 唐杉, 汪洪. 我国有机肥资源及产业发展现状. 中国土壤与肥料, 2020(3):210-219.
[11] Cui Z L, Dou Z X, Chen X P, et al. Managing agricultural nutrients for food security in China: past, present, and future. Agronomy Journal, 2013, 106(1):191-198.
doi: 10.2134/agronj2013.0381
[12] 周芸, 李永梅, 范茂攀, 等. 不同基肥处理对山原红壤土壤理化特性、酶活性及作物产量的影响. 应用与环境生物学报, 2020, 26(3):603-611.
[13] 岳宗伟, 李嘉骁, 孙向阳, 等. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响. 浙江农业学报, 2023, 35(9):2192-2201.
doi: 10.3969/j.issn.1004-1524.20221052
[14] 葛君, 孟自力, 张志标, 等. 肥料配施对小麦根系、根际土壤微生物及秸秆养分积累的影响. 江苏农业科学, 2022, 50(11):214-219.
[15] Mu X Y, Zhao Y L, Liu K, et al. Responses of soil properties,root growth and crop yield to tillage and crop residue management in a wheat maize cropping system on the North China Plain. European Journal of Agronomy, 2016, 78:32-43.
doi: 10.1016/j.eja.2016.04.010
[16] 张奇茹, 谢英荷, 李廷亮, 等. 有机肥替代化肥对旱地小麦产量和养分利用效率的影响及其经济环境效应. 中国农业科学, 2020, 53(23):4866-4878.
doi: 10.3864/j.issn.0578-1752.2020.23.012
[17] 徐令旗, 郭晓红, 张佳柠, 等. 不同有机肥对旱直播水稻品质的影响. 华北农学报, 2022, 37(1):137-146.
doi: 10.7668/hbnxb.20192421
[18] 崔永增, 姚海坡, 李谦, 等. 有机肥部分替代氮肥对优质麦生长、品质和氮效率的影响. 华北农学报, 2023, 38(3):158-166.
doi: 10.7668/hbnxb.20194150
[19] 马守臣, 张紧紧, 冯荣成, 等. 深耕和施用有机肥对麦田土壤微环境的影响. 华北农学报, 2014, 29(4):192-197.
doi: 10.7668/hbnxb.2014.04.034
[20] 肖相政, 刘可星, 张志红, 等. 生物有机肥对烤烟生长及相关防御性酶活性的影响. 华北农学报, 2010, 25(1):175-179.
doi: 10.7668/hbnxb.2010.01.035
[21] 徐令旗, 郭晓红, 兰宇辰, 等. 不同有机肥对旱直播水稻干物质积累和产量的影响. 华北农学报, 2021, 36(2):188-195.
doi: 10.7668/hbnxb.20191573
[22] 吕丽华, 姚海坡, 曹志敏, 等. 有机肥替代化肥对小麦产量、品质及氮素效率的影响. 华北农学报, 2022, 37(6):166-172.
doi: 10.7668/hbnxb.20193206
[23] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
[24] 张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响. 中国农学通报, 2010, 26(11):182-187.
[25] Bronick C J, Lal R. Soil structure and management. Geoderma, 2005, 124(1/2):3-22.
doi: 10.1016/j.geoderma.2004.03.005
[26] Kaiser M, Ellerbrock R H. Functional characterization of soil organic matter fractions different in solubility originating from a long-term field experiment. Geoderma, 2005, 127(3/4):196-206.
doi: 10.1016/j.geoderma.2004.12.002
[27] Li L, Guan J X, Chen S Y. Intermittent deep tillage on improving soil physical properties and crop performance in an intensive cropping system. Agronomy, 2022, 12(3):688.
doi: 10.3390/agronomy12030688
[28] 曲成闯, 陈效民, 韩召强, 等. 生物有机肥对潮土物理性状及微生物量碳、氮的影响. 水土保持通报, 2018, 38(5):70-76.
[29] 胡诚, 刘东海, 乔艳, 等. 施用生物有机肥对土壤酶活性及作物产量的影响. 华北农学报, 2017, 32(增1):308-312.
[30] 王磊. 长期施用有机肥和秸秆还田对土壤有机质含量与土壤养分作物有效率的影响. 科学之友, 2011(4):162-163.
[31] Wang B, Liu G B, Xue S, et al. Changes in soil phys ico- chemical and microbiological properties during natu ral succession on abandoned farmland in the Loess Plat eau. Environmental Earth Sciences, 2011, 62(5):915-925.
doi: 10.1007/s12665-010-0577-4
[32] 郑钰铟, 胡素萍, 陈辉, 等. 油茶饼粕生物炭和有机肥对土壤酶活性的影响. 森林与环境学报, 2018, 38(3):348-354.
[33] 范仲卿, 郭新送, 张晶, 等. 不同配比腐植酸复合肥对种植辣椒的土壤酶活性和养分含量的影响. 腐植酸, 2022(4):42-46.
[34] 赵旭, 宋清晖, 王晓慧, 等. 几种有机肥对玉米光合特性及土壤酶活性的影响. 中国农学通报, 2021, 37(3):36-42.
doi: 10.11924/j.issn.1000-6850.casb2020-0341
[35] 张黛静, 张艳艳, 王艳杰, 等. 耕层调控与有机肥处理下麦田土壤和小麦冠层结构特性及其相互关系. 应用生态学报, 2018, 29(2):538-546.
doi: 10.13287/j.1001-9332.201802.029
[36] Taylor J P, Wilson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology and Biochemistry, 2002, 34(3):387-401.
doi: 10.1016/S0038-0717(01)00199-7
[37] 赵兰凤, 胡伟, 刘小锋, 等. 生物有机肥对香蕉枯萎病及根系分泌物的影响. 生态环境学报, 2013, 22(3):423-427.
[38] Jeon W T, Park C Y, Cho Y S, et al. Root growth characteristics of rice grown under long-term fertilization of chemical fertilizer and compost in paddy. Korea Journal of Crop Science, 2004, 48(6):484-489.
[39] 党祝庆, 王娜娜, 张亚飞, 等. 不同施肥模式对桃幼树根系生长与氮素吸收分配的影响. 水土保持学报, 2015, 29(4):171-176.
[40] 茹朝, 郁继华, 武玥, 等. 化肥减量配施生物有机肥对露地大白菜产量及品质的影响. 浙江农业学报, 2022, 34(8):1626-1637.
doi: 10.3969/j.issn.1004-1524.2022.08.07
[41] 王小龙, 刘凤之, 史祥宾, 等. 不同有机肥对葡萄根系生长和土壤养分状况的影响. 华北农学报, 2019, 34(5):177-184.
doi: 10.7668/hbnxb.201751420
[42] 杨囡君, 秦涛, 决超. 不同有机肥配施土壤调理剂对黄瓜连作土壤碳氮及酶活性的影响. 江苏农业科学, 2024, 52(1):225-231.
[43] 谢晋, 李谨成, 梁增发, 等. 垄高与有机肥施用比例对烤烟根系生长及上部烟质量的影响. 作物杂志, 2024(2):165-171.
[44] 李彦林, 贺怀鹏, 刘菁, 等. 不同根系分泌有机酸组分分析及其对土壤养分、酶活性的影响. 北方园艺, 2024(12):73-79.
[1] 李青欣, 金秀良, 宋晓, 张珂珂, 郭腾飞, 黄绍敏, 岳克, 丁世杰, 黄明, 李友军. 有机肥部分替代氮肥对豫东冬小麦生长及土壤特性的影响[J]. 作物杂志, 2025, (6): 121–131
[2] 夏玉兰, 赵园园, 李娟, 王德勋, 王婷婷, 杨成伟, 史宏志. 钾肥不同追施比例对红花大金元和云烟300生长、产量及质量的影响[J]. 作物杂志, 2025, (6): 225–230
[3] 李琳霖, 张震, 何钢, 高仁吉, 梁增发, 谢晋, 黄浩, 曾繁东, 金保锋, 蔡一霞, 姜俊红, 王维. 带茎采烤对上部烟叶品质及代谢物的影响[J]. 作物杂志, 2025, (5): 184–194
[4] 刘弟, 宋来贵, 田临卿, 李志刚, 马俊美, 李作森, 年夫照, 焦健, 邓小鹏. 烟后套作玉米对作物生产和土壤养分的影响[J]. 作物杂志, 2025, (5): 239–246
[5] 曾嘉楠, 叶晓青, 蔡民爵, 周诚, 何澎, 陈壮壮, 陈雨峰, 曹良军, 陈建军, 王媛媛. 外源物质对高温胁迫下烤烟上部叶光合及抗氧化能力的影响[J]. 作物杂志, 2025, (5): 247–259
[6] 邓洲, 龚晨旭, 何宇轩, 曾勇军, 黄山. 石灰与猪粪配施对双季优质稻稻米品质的影响[J]. 作物杂志, 2025, (4): 181–187
[7] 严定伟, 杨建新, 郭杰, 梁一凡, 罗菲, 付光明, 李军正, 常剑波, 张玉林, 姬小明. 不同保水剂对植烟土壤细菌群落结构及烤烟产量和质量的影响[J]. 作物杂志, 2025, (4): 197–205
[8] 杨天旭, 李谨成, 黄瑞寅, 邓文君, 王军, 王维, 蔡一霞. 施氮量与基追比对烤烟烟碱合成及关键酶活性的调控效应[J]. 作物杂志, 2025, (3): 156–164
[9] 朱金籴, 朱学刚, 杜文青, 邱拓宇, 赵新彬. 化肥减量配施有机肥对设施番茄光合特性、品质和产量的影响[J]. 作物杂志, 2025, (3): 185–189
[10] 韦梦洋, 罗贞宝, 贺帅, 马黔, 马关凯, 席飞虎, 罗东升, 景延秋, 喻奇伟, 王茂贤. 光合细菌与留叶数互作对烤烟生理代谢、化学品质及产量和质量的影响[J]. 作物杂志, 2025, (3): 210–217
[11] 梁辉, 章建新, 薛丽华, 贾珂珂. 水氮后移条件下滴灌量对新农豆2号根系生长及产量的影响[J]. 作物杂志, 2025, (3): 233–240
[12] 张纪利, 何敬浩, 韦建玉, 黄崇峻, 王维, 蔡一霞. 微生物菌剂配施时期对根际土壤细菌多样性、酶活性及烤烟产量和品质的影响[J]. 作物杂志, 2025, (2): 162–171
[13] 李云霞, 杨佳蒴, 李洋洋, 向世鹏, 余金龙, 李斌, 郑维威, 刘璐. 不同移栽期对烟稻轮作烟区烤烟生长发育及产量和质量的影响[J]. 作物杂志, 2025, (2): 222–227
[14] 马俊美, 窦敏, 刘弟, 杨秀华, 杨勇, 年夫照, 刘雅婷, 李永忠. 烤烟与玉米间作种植对根际土壤养分及作物生长的影响[J]. 作物杂志, 2025, (1): 227–234
[15] 高玉龙, 赵璐, 王丙武, 孔光辉, 王亚辉, 刘剑金, 段杰, 吴兴富, 李青, 者开明. 突变NtJAZ1基因获得高烟碱烤烟新材料[J]. 作物杂志, 2025, (1): 83–88
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!