作物杂志,2017, 第6期: 131–139 doi: 10.16035/j.issn.1001-7283.2017.06.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同施磷水平下接种AM真菌对藜麦生长及产量构成因素的影响

庞春花1,2,杨世芳1,张永清1,华艳宏1,贺笑1,杨洋2   

  1. 1山西师范大学生命科学学院,041000,山西临汾
    2山西师范大学现代文理学院,041000,山西临汾
  • 收稿日期:2017-06-22 修回日期:2017-09-27 出版日期:2017-12-15 发布日期:2018-08-26
  • 作者简介:庞春花,副教授,主要从事植物生理生态研究
  • 基金资助:
    国家自然科学基金(31571604);山西师范大学科技开发与应用基金(YK1402);山西省高等学校大学生创新创业训练计划(2017576)

Effects of Inoculating Arbuscular Mycorrhizal Fungi on Growth of Quinoa under Different Phosphorus Levels

Pang Chunhua1,2,Yang Shifang1,Zhang Yongqing1,Hua Yanhong1,He Xiao1,Yang Yang2   

  1. 1College of Life Sciences,Shanxi Normal University,Linfen 041000,Shanxi,China
    2Modern College of Arts and Science,Shanxi Normal University,Linfen 041000,Shanxi,China
  • Received:2017-06-22 Revised:2017-09-27 Online:2017-12-15 Published:2018-08-26

摘要:

采用盆栽方式,研究不同施磷量(纯磷0、50、100和200mg/kg)接种两种丛枝菌根(arbuscular mycorrhizal,AM)真菌,即摩西球囊霉(Glomus mosseae,简称Gm)和扭形球囊霉(Glomus tortuosum,简称 Gt)对藜麦生长指标、根系生长指标及生理指标、叶绿素荧光参数、产量构成因素的影响。研究表明:接种Gm后,藜麦根系侵染率和菌根依赖性指数在100mg/kg施磷量时达到最大值。同一接种处理,藜麦株高、茎粗、叶面积、地上部干重、最长根长等根系生长指标、根系抗氧化酶活性、叶片叶绿素含量、光合系统Ⅱ(PSⅡ)的最大光化学效率(Fv/Fm)、PSⅡ的潜在活性(Fv/Fo)和产量及其构成因素随施磷量的增加呈先升高后下降的趋势;接种AM真菌后除根系平均直径外上述各指标均显著增加,均在100mg/kg施磷量时达到最大值,且接种Gm的增幅大于接种Gt;接种AM真菌显著减小了根系平均直径,接种Gm的降幅大于接种Gt。同一接种真菌处理,藜麦根系可溶性糖、可溶性蛋白、丙二醛(MDA)含量和暗适应下初始荧光(Fo)随施磷量的升高呈先降低后升高的变化趋势,接种AM真菌后藜麦根系可溶性糖和可溶性蛋白含量显著增加,且接种Gm的增幅大于接种Gt;而根系MDA含量和暗适应下Fo显著降低,且接种Gm降幅大于接种Gt。综合考虑,接种Gm和施磷量100mg/kg组合对藜麦生长的促进效果最佳。

关键词: 藜麦, 丛枝菌根真菌, 施磷量, 生理特性, 产量

Abstract:

A pot culture experiment was conducted to investigate the effects of inoculating two kinds of arbuscular mycorrhizal fungi (AM) including Glomus mosseae (Gm) and Glomus tortuosum (Gt) on the quinoa growth, root growth indicators and root physiological indicators, chlorophyll fluorescence parameters, yield and its components under the different phosphorus application rates of 0, 50, 100 and 200mg/kg. The results showed that inoculation of Gm had the highest infection rate and mycorrhizal dependency of quinoa under 100mg/kg phosphorus application rate. Under the same inoculated treatment, plant height, stem diameter, leaf area, aboveground weight, the max length of root and other root growth indicators, antioxidant enzyme activities of root, chlorophyll contents, maximal PSⅡ photochemical efficiency (Fv/Fm), potential activity of PSⅡ(Fv/Fo), yield and its components were initially increased and then decreased with the increasing phosphorus application rate. Compared with the uninoculated treatment, the above indicators were significantly improved after AM fungi was inoculated, except root average diameter, the values reached the maximum in the 100mg/kg phosphorus application rate, and the increase of Gm was greater than that of Gt; However root average diameter was decreased with a significant level, and the decreasing range of inoculate Gm was more than that of Gt. Under the same inoculated treatment, soluble sugar content, soluble protein content and MDA content of root system and dark adaptation to the initial fluorescence (Fo) were initially decreased and then increased with the increasing phosphorus application rate; After inoculate arbuscular mycorrhizal fungi, soluble sugar content and soluble protein content of root system were increased with a significant level, and the increasing range of inoculate Gm was more than Gt; MDA content of root system and dark adaptation to the Fo and the decreasing range of inoculate Gm was more than Gt. Taken together, especially 100mg/kg phosphorus application rate and Gm for quinoa seeds to increase growth.

Key words: Quinoa, Arbuscular mycorrhizal fungi, Phosphorus application rate, Physiological characteristic, Yield

表1

不同施磷量条件下接种AM真菌对藜麦根系侵染率和菌根依赖性指数的影响"

处理
Treatment
侵染率
Infection rate
菌根依赖性指数
Mycorrhizal dependency index
NGP1 0C 0C
NGP2 0C 0C
NGP3 0C 0C
NGP4 0B 0C
GtP1 18.05±0.33Bc 21.54±0.56Bc
GtP2 23.05±0.44Bb 26.69±0.29Bb
GtP3 33.73±0.60Ba 34.58±0.38Ba
GtP4 9.67±0.49Ad 13.76±0.26Ad
GmP1 19.90±0.48Ac 22.76±0.56Ac
GmP2 25.69±0.41Ab 28.88±0.42Ab
GmP3 36.86±0.36Aa 37.58±0.46Aa
GmP4 9.89±0.59Ad 13.83±0.28Ad

表2

不同施磷量条件下接种AM真菌对藜麦地上部生长的影响"

处理Treatment 株高Plant height (cm) 茎粗Stem diameter (mm) 叶面积Leaf area (mm2) 地上部干重Shoot dry weight (g)
NGP1 41.67±1.53Bb 3.92±0.19Bd 3.99±0.17Bd 4.05±0.44Bd
NGP2 44.67±2.52Cb 4.96±0.07Cb 6.08±0.34Cb 8.20±0.51Bb
NGP3 60.33±2.08Ca 6.46±0.24Ca 7.89±0.23Ca 12.22±0.44Ca
NGP4 44.33±1.53Cb 4.57±0.03Cc 5.51±0.10Bc 6.48±0.43Cc
GtP1 48.33±2.08Ad 4.50±0.10Ac 5.05±0.18Ad 6.41±0.44Ad
GtP2 62.67±2.51Bb 5.34±0.23Bb 6.90±0.32Bb 10.12±0.54Ab
GtP3 81.67±1.53Ba 7.24±0.15Ba 6.91±0.20Ba 14.42±0.23Ba
GtP4 54.00±1.00Bc 4.83±0.18Bc 5.87±0.19ABc 8.40±0.38Bc
GmP1 52.33±2.52Ad 4.74±0.05Ac 5.36±0.16Ad 6.75±0.39Ad
GmP2 70.00±2.00Ab 5.93±0.21Ab 7.64±0.14Ab 10.74±0.28Ab
GmP3 92.00±2.00Aa 8.87±0.22Aa 9.52±0.17Aa 16.53±0.27Aa
GmP4 58.00±2.00Ac 5.15±0.13Ac 6.06±0.24Ac 9.48±0.24Ac

表3

不同施磷量条件下接种AM真菌对藜麦根系生长的影响"

处理
Treatment
最长根长(cm)
Length of the longest root
根系平均直径(mm)
Root average diameter
根系总表面积(cm2)
Total root area
根系体积(cm3)
Root volume
NGP1 7.04±0.21Bc 0.69±0.03Ad 328.68±7.49Bd 8.27±0.29Cd
NGP2 7.62±0.22Cb 0.86±0.02Ab 377.63±7.12Cb 10.80±0.55Cb
NGP3 9.05±0.18Ca 1.26±0.02Aa 412.62±6.56Ca 14.35±0.35Ca
NGP4 7.30±0.13Bc 0.74±0.02Ac 347.90±6.80Bc 9.00±0.29Bc
GtP1 7.33±0.13ABc 0.61±0.02Bd 352.07±9.66Ad 9.07±0.34Bd
GtP2 8.41±0.26Bb 0.80±0.01Bb 419.86±5.81Bb 12.59±0.35Bb
GtP3 10.55±0.22Ba 1.04±0.04Ba 461.39±6.88Ba 17.16±0.33Ba
GtP4 7.62±0.20Bc 0.69±0.02ABc 380.23±5.55Ac 10.31±0.41Ac
GmP1 7.55±0.18Ad 0.57±0.02Bd 356.18±5.73Ad 9.85±0.26Ad
GmP2 9.09±0.35Ab 0.74±0.02Cb 438.56±5.83Ab 13.66±0.45Ab
GmP3 11.43±0.18Aa 0.96±0.02Ca 479.23±6.33Aa 18.00±0.26Aa
GmP4 8.10±0.16Ac 0.67±0.03Bc 387.47±6.34Ac 10.61±0.27Ac

图1

不同施磷量条件下接种AM真菌对藜麦根系生理指标的影响 大写字母不同表示不同接种处理间差异显著(P<0.05),小写字母不同表示同一接种处理不同施磷量间差异显著(P<0.05)"

表4

不同施磷量条件下接种AM真菌对藜麦叶绿素和叶绿素荧光参数的影响"

处理Treatment 叶绿素含量Chlorophyll content (mg/g) Fo Fv/Fm Fv/Fo
NGP1 1.36±0.04Bd 321.00±9.64Aa 0.60±0.01Cc 1.67±0.07Cd
NGP2 1.56±0.06Cc 284.67±5.69Ac 0.67±0.02Ca 2.39±0.11Cb
NGP3 1.96±0.03Ca 265.00±6.25Ad 0.72±0.01Ca 3.15±0.11Ca
NGP4 1.70±0.03Bb 305.00±7.00Ab 0.64±0.01Cb 2.04±0.06Cc
GtP1 1.44±0.04Ad 294.33±6.03Ba 0.65±0.01Bc 2.26±0.10Bd
GtP2 1.64±0.07Bc 267.67±6.66Bb 0.72±0.03Bb 2.96±0.11Bb
GtP3 2.12±0.08Ba 252.00±5.29Bc 0.77±0.01Ba 3.65±0.11Ba
GtP4 1.89±0.06Ab 293.33±7.57Ba 0.68±0.01Bb 2.57±0.08Bc
GmP1 1.48±0.03Ad 282.67±6.43Ba 0.70±0.02Ad 2.59±0.09Ad
GmP2 1.78±0.02Ac 253.00±6.08Cb 0.76±0.01Ab 3.36±0.09Ab
GmP3 2.41±0.02Aa 241.67±7.64Bb 0.82±0.01Aa 4.07±0.10Aa
GmP4 1.97±0.05Ab 281.67±9.07Ba 0.74±0.01Ac 3.07±0.07Ac

表5

不同施磷量条件下接种AM真菌对藜麦产量构成因素的影响"

处理
Treatment
主枝穗长(cm)
Ear length of the
main branch
千粒重(g)
1000-grain
weight
单株粒重(g)
Grain weight
per plant
NGP1 17.45±0.45Bc 1.57±0.06Bc 51.19±0.84Bc
NGP2 18.46±0.37Cbc 2.10±0.05Cb 61.08±0.93Cb
NGP3 19.85±0.52Ca 2.44±0.05Ca 65.12±0.69Ca
NGP4 17.99±0.15Cb 2.17±0.05Cb 60.96±0.88Bb
GtP1 18.37±0.38ABc 1.74±0.05Ad 53.79±0.99Ad
GtP2 19.57±0.22Bb 2.30±0.05Bc 64.68±0.56Bb
GtP3 21.22±0.46Ba 2.90±0.05Ba 71.29±0.77Ba
GtP4 19.21±0.31Bb 2.57±0.06Bb 61.97±0.71Ac
GmP1 19.15±0.54Ac 1.76±0.05Ac 54.88±0.90Ac
GmP2 20.51±0.57Ab 2.79±0.07Ac 66.05±0.18Ab
GmP3 22.61±0.52Aa 3.04±0.10Aa 72.93±0.91Aa
GmP4 20.25±0.32Ab 2.77±0.08Ab 62.55±0.50Ab
[1] Jacobsen S E . The worldwide potential for quinoa (Chenopodium quinoa Wild). Food Reviews International, 2003,19:167-177.
doi: 10.1081/FRI-120018883
[2] Autul B, Sudhir S, Deepak O . Chenophodium quinoa-An Indian perspective. Industrial Crops and Products, 2006,23:73-87.
doi: 10.1016/j.indcrop.2005.04.002
[3] Karyotis T, Iliadis C, Noulas C , et al. Preliminary research on seed production and nutrient content for certain quinoa varieties in a saline-sodic soil. Journal of Agronomy and Crop Science, 2003,189:402-408.
doi: 10.1046/j.0931-2250.2003.00063.x
[4] Abugoch L, Romero N, Tapia C , et al. Study of physicochemical and functional properties of quinoa (Chenpodium quinoa Wild) protein isolates. Journal of Agricultural and Food Chemistry, 2008,56:4745-4750.
doi: 10.1021/jf703689u
[5] Jacobsen S E, Mujica A, Jesen C R . The resistance of quinoa (Chenopodium quinoa Wild) to adverse abiotic factors. Food Reviews International, 2003,19(1/2):99-109.
doi: 10.1081/FRI-120018872
[6] Hariadi Y, Marandon K, Tian Y , et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Wild) plants grown at various salinity levels. Journal of Experimental Botany, 2011,62(1):185-193.
doi: 10.1093/jxb/erq257
[7] Koyro H W, Eisa S S . Effect of salinity on composition,viability and germination of seeds of Chenopodium quinoa Wild. Plant and Soil, 2008,302(1):79-90.
doi: 10.1007/s11104-007-9457-4
[8] 叶少萍, 曾秀华, 辛国荣 , 等. 不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响. 草业学报, 2013,22(1):46-52.
doi: 10.11686/cyxb20130106
[9] 王瑜 . 水磷耦合对冬小麦水磷利用与产量的影响及其生理基础. 泰安:山东农业大学, 2012.
[10] Abelson P H . A potential posphate crisis. Science, 1999,283(5410):2015-2021.
doi: 10.1126/science.283.5410.2015
[11] 全为民, 严力娇 . 农业面临污染对水体富营养化的影响及其防治措施. 生态学报, 2002,22(3):291-299.
[12] 王立, 贾文奇, 马放 , 等. 菌根技术在环境修复领域中的应用及展望. 生态环境学报, 2010,19(2):487-493.
[13] 杨振寅, 廖声熙 . 丛枝菌根对植物抗性的研究进展. 世界林业研究, 2005,18(2):1-3.
[14] 任爱天, 鲁为华, 杨洁晶 , 等. 不同磷水平下AM真菌对紫花苜蓿生长和磷利用的影响. 中国草地学报, 2014,38(6):20-24.
[15] 王幼珊, 张淑彬, 张美庆 , 等. 中国丛枝菌根真菌资源.北京: 中国农业出版社, 2012: 165-168.
[16] 高俊凤 . 植物生理生态学实验指导.北京: 高等教育出版社, 2006: 140-143.
[17] Shen J B, Yuan L X, Zhang J L , et al. Phosphorus dynamics:From soil to plant. Plant Physiology, 2011,156(3):318-325.
[18] 邵宗臣, 赵美芝 . 土壤中积累态磷活化动力学的研究Ⅰ.有机质的影响. 土壤学报, 2002,39(3):318-325.
[19] 陈梅梅, 陈保冬, 王新军 , 等. 不同磷水平土壤接种丛枝菌根真菌对植物生长和养分吸收的影响. 生态学报, 2009,29(4):1980-1985.
doi: 10.3321/j.issn:1000-0933.2009.04.043
[20] Barea J M . Vesicular-arbuscular mycorrhizase as modifiers of soil fertility. Advance Soil Science, 1991,15:1-40.
doi: 10.1007/978-1-4612-3030-4
[21] Chen B D, Roos P, Borggaard O K , et al. Mycorrhiza and root hairs in barley enhance acquisition of phosphorous and unranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytologist, 2005,165:591-598.
[22] 丁海彬, 周芹, 刘娜 , 等. 不同氮磷营养水平对甜菜叶片光合速率的影响.中国糖科, 2001(3):19-21.
doi: 10.3969/j.issn.1007-2624.2001.03.005
[23] Hallett P D, Feeney D S, Bengough A G , et al. Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant and Soil, 2009,314(1):183-196.
doi: 10.1007/s11104-008-9717-y
[24] Abott L K, Robbott A D . The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inculation. Crop and Pasture Science, 1982,33(2):389-408.
doi: 10.1071/AR9820389
[25] 邹英宁, 吴强盛, 李艳 . 丛枝菌根真菌对枳根系形态和蔗糖、葡萄糖含量的影响. 应用生态学报, 2014,25(4):1125-1129.
[26] 曾淑华, 刘峰, 周昌贵 , 等. 镉胁迫对烤烟生长和生理生化指标的影响. 核农学报, 2014,28(3):526-531.
doi: 10.11869/j.issn.100-8551.2014.03.0526
[27] 曾广伟, 林琪, 林金哲 , 等. 不同土壤水分条件下施磷对小麦旗叶衰老及产量的影响.中国土壤与肥料, 2010(2):35-40.
doi: 10.11838/sfsc.20100208
[28] 孟德云, 侯林琳, 杨莎 , 等. 外源多胺对盆栽花生盐胁迫的缓解作用. 植物生态学报, 2015,39(12):1209-1215.
doi: 10.17521/cjpe.2015.0117
[29] 王丽燕 . NaCl处理对野大豆生理生化特性的影响. 大豆科学, 2008,27(6):1067-1071.
[30] 刘静, 马淼 . 丛植菌根真菌对超旱生植物刺山柑生长及相关生理指标的影响. 西北农业学报, 2013,22(11):158-162.
[31] 陈笑莹, 宋凤斌, 朱先灿 , 等. 低温处理胁迫下丛枝菌根对玉米幼苗形态、生长和光合的影响. 华北农学报, 2014,29(增刊):155-161.
[1] 赵 鑫 陈少锋 王 慧 刘三才 杨修仕 张宝林. 晋北地区不同苦荞品种产量和品质研究[J]. 作物杂志, 2018, (5): 27–32
[2] 张翔宇 李 海 梁海燕 张 知 宋晓强 郑敏娜. 不同种植行距与种植密度对黍子#br# 生长特性及子实产量的影响[J]. 作物杂志, 2018, (5): 91–96
[3] 吴荣华 庄克章 刘 鹏 张春艳. 鲁南地区夏玉米产量对气象因子的响应[J]. 作物杂志, 2018, (5): 104–109
[4] 宿飞飞 张静华 李 勇 刘尚武 刘振宇 王绍鹏 万书明 陈 曦 高云飞 胡林双 吕典秋. 不同灌溉方式对两个马铃薯品种#br# 生理特性和水分利用效率的影响[J]. 作物杂志, 2018, (5): 97–103
[5] 张瑞栋 曹 雄 岳忠孝 梁晓红 刘 静 黄敏佳. 氮肥和密度对高粱产量及氮肥利用率的影响[J]. 作物杂志, 2018, (5): 110–115
[6] 安 霞 张海军 蒋方山 吕连杰 陈 军. 播期播量对不同穗型冬小麦群体及子粒产量的影响[J]. 作物杂志, 2018, (5): 132–136
[7] 高文俊 杨国义 高新中 玉 柱 许庆方 原向阳 孙耀武. 氮磷钾肥对青贮玉米产量和品质的影响[J]. 作物杂志, 2018, (5): 144–149
[8] 王小林 纪晓玲 张盼盼 张 雄 张 静. 黄土高原旱地谷子品种地上器官#br# 干物质分配与产量形成相关性分析[J]. 作物杂志, 2018, (5): 150–155
[9] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121–125
[10] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126–130
[11] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138–142
[12] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143–148
[13] 王袁,郭泽,李晓辉,徐世晓,邢学霞,张思琦,何佳,刘超,陈芳,杨铁钊. 不同温度条件下根结线虫侵染对烟草根系的影响[J]. 作物杂志, 2018, (4): 161–166
[14] 方婧雯,邬燕,刘志华. 盐胁迫对罗布麻种子萌发及生理特性的影响[J]. 作物杂志, 2018, (4): 167–174
[15] 温辉芹,程天灵,裴自友,李雪,张立生,朱玫. 山西省近年审定小麦品种的综合性状分析[J]. 作物杂志, 2018, (4): 32–36
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .