作物杂志,2018, 第4期: 53–61 doi: 10.16035/j.issn.1001-7283.2018.04.010

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

甘蔗ScHAK10基因克隆及表达分析

罗海斌1,蒋胜理1,黄诚梅1,曹辉庆1,邓智年2,吴凯朝2,徐林2,陆珍1,魏源文1   

  1. 1 广西作物遗传改良生物技术重点开放实验室,530007,广西南宁
    2 广西农业科学院甘蔗研究所/农业农村部广西甘蔗生物技术与遗传改良重点实验室/广西甘蔗遗传改良重点实验室,530007,广西南宁
  • 收稿日期:2018-01-25 修回日期:2018-06-15 出版日期:2018-08-15 发布日期:2018-08-23
  • 作者简介:作者简介:罗海斌,助理研究员,从事甘蔗分子育种研究
  • 基金资助:
    广西自然科学基金(2014GXNSFAA118081;2013GXNSFAA019077);广西八桂学者专项项目([2013]3号);广西农业科学院基本科研业务专项项目(2015YT96;桂农科2017YM35)

Cloning and Expression of ScHAK10 Gene in Sugarcane

Luo Haibin1,Jiang Shengli1,Huang Chengmei1,Cao Huiqing1,Deng Zhinian2,Wu Kaichao2,Xu Lin2,Lu Zhen1,Wei Yuanwen1   

  1. 1 Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning 530007, Guangxi, China
    2 Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement of Guangxi, Ministry of Agriculture and Rural Affairs, Nanning 530007, Guangxi, China
  • Received:2018-01-25 Revised:2018-06-15 Online:2018-08-15 Published:2018-08-23

摘要:

为探究甘蔗HAK基因家族中ScHAK10基因的功能及干旱环境下的响应机制,利用同源克隆技术(homologous cloning)从新台糖22号中克隆得到ScHAK10基因的完整编码序列,并对其进行生物信息学分析,同时采用q-PCR技术分析基因在不同组织以及在不同干旱阶段的表达情况。结果表明,ScHAK10基因编码区全长为2 433bp,编码810个氨基酸,相对分子量89.83kD,等电点(pI)为8.46,预测其为疏水碱性蛋白;核苷酸同源性分析表明ScHAK10基因与玉米(Zea mays L.)、高粱[Sorghum bicolor (L.) Moench]等其他作物中HAK基因具有高度的同源性;该蛋白具有跨膜结构域,定位在细胞质膜上。蛋白质二级结构分析发现其主要由α螺旋(38.15%)、扩展长链(19.26%)和无规则卷曲(37.16%)组成;蛋白功能预测显示其与阳离子运输通道相关,有较大的概率显示其介入转录、信号传导、免疫应答等生物活动。qPCR表达分析显示,ScHAK10基因在不同部位都有表达,叶片中的表达量最高,其次为茎,根系中的表达量最低。干旱胁迫下ScHAK10基因受到诱导表达,表达水平根据胁迫程度的加深而呈现出先上调后下降的表达趋势,复水后,基因表达量降低。本研究为进一步阐明甘蔗ScHAK10基因的功能及甘蔗耐旱调控相关分子机制奠定了基础。

关键词: 甘蔗, 钾转运蛋白基因(HAK), 基因克隆, 生物信息学分析, 基因表达

Abstract:

To explore the function of ScHAK10 in Sugarcane HAK gene family and molecular response mechanism under drought stress, the gene ScHAK10 coding sequence (CDS) from the ROC22 was cloned by homologous cloning. Sequencing and bioinformatics analysis indicated that ScHAK10 sequence obtained was 2 433bp in length, coding 810 amino acids, the molecular weight of ScHAK10 was 89.83kD, isoelectric point (pI) was 8.46, hydrophobic basic protein was prediction. Sequence comparison with maize (Zea mays L.), sorghum [Sorghum bicolor (L.) Moench] and other crops showed that ScHAK10 gene was highly homologous with that of other species. ScHAK10 protein contains multiple trans-membrane domains so that it is predicted to be located on the cytoplasmic membrane. Secondary structure analysis showed that it had alpha helix (38.15%), extended long chain (19.26%) and irregular curling (37.16%). Prediction of protein function showed that it may be involved in biological reactions such as transcription, signal transduction, and immune responses. Real-time PCR result indicated that ScHAK10 expressed in different tissues, the highest expression in leaf, followed by stem, and the lowest in root. ScHAK10 gene expression was up-regulated by drought stress. According to the deepening of the stress level, the expression of ScHAK10 rose initially, and then dropped, and decreased after rewaterring. These results indicated that contributes were made for further illustrating its function and its molecular mechanism in the regulation of sugarcane drought.

Key words: Sugarcane, Potassium transporter gene (HAK), Gene cloning, Bioinformatics analysis, Gene expression

图1

ScHAK10基因的RT-PCR扩增电泳结果"

图2

ScHAK10基因编码区的核酸序列及其推导氨基酸序列"

表1

ScHAK10与其他植物HAK基因的核苷酸同源性比对分析结果"

登录号Accession No. 物种Species 同源性Homology (%) 基因Gene
XM_021449505.1 高粱 95 potassium transporter 10
KF815907.1 玉米 94 high-affinity potassium transporter10
XM_004965768.3 小米 90 potassium transporter 10
XM_015788218.1 水稻 87 potassium transporter 10
XM_020332943.1 山羊草 86 potassium transporter 10
XM_003563544.3 二穗短柄草 85 potassium transporter 10
XM_010943891.2 油棕 80 potassium transporter 10

图3

ScHAK10蛋白的亲疏水性预检测结果|||横坐标表示氨基酸位置;疏水和亲水位点分别在零水平线的上方和下方"

图4

利用TMHMM分析ScHAK10蛋白跨膜区域"

图5

利用SignalP 4.1 Server 分析ScHAK10信号肽"

图6

ScHAK10蛋白的二级结构预测结果"

图7

ScHAK10蛋白的三级结构预测结果"

表2

ScHAK10蛋白功能分类结果"

功能分类Functional category 概率Probability 比值
Odds
基因本体分类
Gene ontology category
概率
Probability
比值
Odds
运输和结合Transport and binding 0.773 1.885 电压门控性离子通道Voltage-gated ion channel 0.279 12.682
嘌呤和嘧啶Purines and pyrimidines 0.331 1.362 转录Transcription 0.219 1.711
辅酶合成Biosynthesis of cofactors 0.210 2.917 信号传导Signal transducer 0.205 0.958
脂肪酸代谢Fatty acid metabolism 0.017 1.308 离子通道Ion channel 0.169 2.965
运输Translation 0.071 1.614 阳离子通道Cation channel 0.146 3.174

图8

基于HAK基因构建的系统发育进化树 系统发育树采用邻接法,置信度采用500次重复计算,分子节点的数值代表置信度,标尺代表每个核苷酸位置发生0.05次替代"

图9

ScHAK10与其他植物HAK蛋白的序列比对"

图10

甘蔗ScHAK10基因在不同组织中的表达 误差线为每组处理的标准误差(n=3)。下同"

图11

ScHAK10基因在干旱肋迫下表达变化"

[1] 姚瑞亮, 李杨瑞, 陈如凯 . 广西旱坡地甘蔗高产栽培措施的探讨. 广西农业生物科学, 1999,18(S1):29-31.
[2] 陈如凯, 张木清, 陆裔波 . 甘蔗品种的御旱性差异研究. 甘蔗, 1996,3(1):1-4.
[3] Malik K B . Some anatomical characteristics of sugarcane varieties in relation to drought resistance. Agriculture Research, 1986,11(1):43-49.
[4] 罗海斌, 曹辉庆, 魏源文 , 等. 干旱胁迫下甘蔗苗期根系全长cDNA文库构建及EST序列分析. 南方农业学报, 2012,43(6):733-737.
[5] Maser P, Thomine S, Schroeder J I , et al. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 2001,126(4):1646-1667.
doi: 10.1104/pp.126.4.1646 pmid: 11500563
[6] Yang Z F, Gao Q S, Sun Ch S , et al. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). Journal of Genetics and Genomics, 2009,36(3):161-172.
doi: 10.1016/S1673-8527(08)60103-4
[7] Ahn S J, Shin R, Schachtman D P . Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake . Plant Physiology, 2004,134(3):1135-1145.
doi: 10.1104/pp.103.034660 pmid: 14988478
[8] Gierth M, Mäser P, Schroeder J I . The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots . Plant Physiology, 2005,137(3):1105-1114.
doi: 10.1104/pp.104.057216
[9] Fu H H, Luan S . AtHUPl:a dual-affinity K+ transporter from Arabidopsis . Plant Cell, 1998,10(1):63-73.
[10] Santa-Maria G E, Rubio F, Dubcovsky J , et al. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 1997,9(12):2281-2289.
doi: 10.1105/tpc.9.12.2281
[11] Kim E J, Kwak J M, Uozumi N , et al. AtKUP1:an Arabidopsis gene encoding high-affinity potassium trans-port activity. Plant Cell, 1998,10(1):51-62.
doi: 10.1105/tpc.10.1.51
[12] Zhang Z, Zhang J, Chen Y , et al. Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Moleculur Biology Reports, 2012,39(8):8465-8473.
doi: 10.1007/s11033-012-1700-2
[13] Yang Z, Gao Q, Sun C , et al. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sative L.). Journul of Genetics and Genomics, 2009,36(3):161-172.
doi: 10.1016/S1673-8527(08)60103-4
[14] Bañuelos M A, Garciadeblas B, Band C , et al. Inventory and functional characterization of the HAK potassium transporters of rice. Physiologia Plantarum, 2002,130(2):784-795.
doi: 10.1104/pp.007781
[15] 张高华, 王鹤, 王旭达 , 等. 獐茅HAK基因表达调控区的分离及其在水稻中的功能分析. 遗传, 2012,34(6):742-748.
doi: 10.3724/SP.J.1005.2012.00742
[16] Wang Y H, Garvin D F, Kochian L V . Rapid induction of regulatory and transporter genes in response to phosphorus,potassium,and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Physiologia Plantarum, 2002,130(3):1361-1370.
doi: 10.1104/pp.008854
[17] 王兰 . 璋茅高亲和性K+转运蛋自基因的表达调控 . 大连:大连理工大学, 2009.
[18] Maathuis F J M . The role of monovalent cation transporters in plant responses to salinity. Journal of Experimental Botany, 2016,57(5):1137-1147.
doi: 10.1093/jxb/erj001 pmid: 16263900
[19] Su H, Golldack D, Zhao C S , et al. The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiology, 2002,129(4):1482-1493.
doi: 10.1104/pp.001149
[20] 宋毓峰, 张良, 董连红 , 等. 植物KUP/HAK/KT家族钾转运体研究进展. 中国农业科技导报, 2013,15(6):92-98.
doi: 10.3969/j.issn.1008-0864.2013.06.14
[21] 韦丽君 . 甘蔗干旱胁迫的形态结构及生理机制研究. 长沙:湖南农业大学, 2014.
[22] 苏炜华, 刘峰, 黄珑 , 等. 甘蔗Ca2+/H+反向运转体基因的克隆与表达分析 . 作物学报, 2016,42(7):1074-1082.
doi: 10.3724/SP.J.1006.2016.01074
[23] 鲁黎明, 杨铁钊 . 烟草钾转运体基因NtHAK1的克隆及表达模式分析. 核农学报, 2011,25(3):469-476.
[24] Sato Y, Nanatani K, Hamamoto S , et al. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a KUP/HAK/KT-type Escherichia coli potassium transporter . Journal of Biochemistry, 2014,155(5):315-323.
doi: 10.1093/jb/mvu007
[25] Elumalai R P, Nagpal P, Reed J W . A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell, 2002,14(1):119-131.
[26] Very A A, Sentenac H . Molecular mechanisms and regulation of K+ transport in higher plants . Annual Review of Plant Biology, 2003,54(1):575-603.
doi: 10.1146/annurev.arplant.54.031902.134831
[27] Gupta M, Qiu X H, Wang L , et al. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Molecular Genetics and Genomics, 2008,208(5):437-452.
[28] 晁毛妮, 张志勇, 宋海娜 , 等. 陆地棉Pht1家族成员的全基因组鉴定及表达分析. 棉花学报, 2017,29(1):59-69.
[29] 张选 . 胡杨在盐碱胁迫下的生理响应及其钾离子转运基因HAK克隆和功能分析. 北京:中国科学院大学, 2015.
[30] Osakabe Y, Arinaga N, Umezawa T , et al. Osmotic stressresponses and plant growth controlled by potassium transporters in Arabidopsis. The Plant Cell, 2013,25(2):609-624.
doi: 10.1105/tpc.112.105700
[1] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131–137
[2] 曹哲群,肖芙荣,陈疏影,何丽莲,李富生. 7个蔗茅野生种及其后代材料苗期耐寒性鉴定[J]. 作物杂志, 2017, (5): 43–48
[3] 李雪妹,刘畅,刘倩雯,张煜笛,李雪梅. PEG预处理对水分胁迫下水稻叶片抗氧化酶同工酶及其表达的影响[J]. 作物杂志, 2016, (6): 107–111
[4] 石景雨,何丽莲,王先宏,李富生. 不同甘蔗品种叶片中总黄酮含量与提取工艺的优化研究[J]. 作物杂志, 2016, (5): 19–24
[5] 朱畇昊,爼梦航,苏秀红,董诚明,陈随清. 冬凌草HMGS基因的克隆与表达分析[J]. 作物杂志, 2016, (5): 25–30
[6] 李钰,郑文寅,冯春,王荣富,李娟. 非生物逆境胁迫下普通小麦烟农19幼苗FeSOD基因表达分析[J]. 作物杂志, 2016, (4): 75–79
[7] 胡海洋,付青青,何丽莲,李富生. 新型肥料海生源对甘蔗耐寒性的影响[J]. 作物杂志, 2016, (3): 73–78
[8] 庞新华,朱鹏锦,周全光,谭秦亮,梁春,欧克维,黄强,欧景莉. 广西蔗区引进甘蔗品种(系)的比较试验[J]. 作物杂志, 2016, (2): 73–78
[9] 杨善, 江永, 周鸿凯, 等. 甘蔗光合因子与品质性状的典型相关性分析[J]. 作物杂志, 2015, (4): 69–73
[10] 王雪丽, 阮红燕, 黄智刚. 基于AEz模型的广西甘蔗生产潜力分析[J]. 作物杂志, 2015, (1): 121–126
[11] 沈雪峰, 方越, 董朝霞, 等. 甘蔗/花生间作对土壤微生物和土壤酶活性的影响[J]. 作物杂志, 2014, (5): 55–58
[12] 李翔, 黄伟华, 黄家雍, 等. 2013年广西甘蔗中期生长情况调查[J]. 作物杂志, 2014, (4): 148–152
[13] 王红, 杨镇, 肖军, 等. 两种植物内生真菌的醇提取物对水稻根部基因表达谱的分析[J]. 作物杂志, 2014, (2): 48–52
[14] 向鹏, 龙承波, 罗红丽. 水稻OsMED7基因的克隆及表达分析[J]. 作物杂志, 2013, (3): 21–24
[15] 黄诚梅, 江文, 杨丽涛, 李杨瑞, 杨翠芳,. 转入反义ScP5CS基因烟草植株对PEG和NaCl处理的反应[J]. 作物杂志, 2013, (3): 42–45
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .