作物杂志,2019, 第5期: 28–36 doi: 10.16035/j.issn.1001-7283.2019.05.005

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米自交系幼苗生物量积累及根系形态对两种氮素水平的反应及聚类分析

师赵康1,2,赵泽群1,2,张远航1,2,徐世英1,2,王宁1,2,王伟杰1,2,程皓1,2,邢国芳1,2,冯万军1,2   

  1. 1 山西农业大学农学院,030801,山西太谷
    2 山西农业大学农业生物工程研究所,030801,山西太谷
  • 收稿日期:2019-05-09 修回日期:2019-06-05 出版日期:2019-10-15 发布日期:2019-11-07
  • 通讯作者: 邢国芳,冯万军
  • 作者简介:师赵康,硕士研究生,主要从事氮素利用分子机制研究
  • 基金资助:
    山西省重点研发计划重点项目(201703D211001-02);山西省自然科学基金(201701D221186);山西省科技创新基金(2014020)

The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels

Shi Zhaokang1,2,Zhao Zequn1,2,Zhang Yuanhang1,2,Xu Shiying1,2,Wang Ning1,2,Wang Weijie1,2,Cheng Hao1,2,Xing Guofang1,2,Feng Wanjun1,2   

  1. 1 College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2 Institute of Agricultural Bioengineer, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2019-05-09 Revised:2019-06-05 Online:2019-10-15 Published:2019-11-07
  • Contact: Guofang Xing,Wanjun Feng

摘要:

为探讨低氮胁迫对玉米自交系幼苗生物量和根系形态的影响,以35份玉米自交系为材料,测定了两个氮素水平处理后14d玉米幼苗的单株干重、地上部干重、根干重、根冠比、总根长、根表面积、根体积、根平均直径、侧根数和初生根长。结果表明,低氮胁迫下玉米幼苗根干重、根冠比、根总表面积、根体积、侧根数、根平均直径和初生根长显著增加,地上部干重和单株干重显著减小,而总根长没有明显变化。通过主成分分析和聚类分析发现,同一氮素水平下,玉米幼苗各性状的综合表现存在基因型差异,且在正常氮素和低氮条件下均可以分为6组。低氮处理后,选取的9个自交系地上部氮素积累量均显著降低,PH4CV、B73和XY4的根系氮素积累量显著增加,其余6个自交系显著降低。此外,只有XY4的氮素吸收和利用效率均较高。综合分析表明,XY4是低氮高效型玉米自交系。

关键词: 玉米, 氮素, 生物量积累, 根系形态, 主成分分析, 聚类分析

Abstract:

In order to investigate the effects of low nitrogen stress on the biomass and root morphology of seedling of maize inbred lines seeding, 14 days after treatment with two nitrogen levels, the dry weight per plant, shoot dry weight, root dry weight, root-shoot ratio, total root length, root surface area, root volume, root average diameter, lateral root number and primary root length of 35 pieces of classical maize inbred lines were assessed. The results showed that Under low nitrogen stress, root dry weight, root-shoot ratio, root surface area, root volume, lateral root number, root average diameter and primary root length of maize seedlings increased significantly, shoot dry weight and dry weight per plant reduced significantly, while the total root length did not change significantly. Principal component analysis and cluster analysis showed that there were genotypic differences in the traits of maize seedlings under the same nitrogen level, and they could be divided into 6 groups under normal nitrogen and low nitrogen condition. Under low nitrogen treatment, the nitrogen accumulation in shoot of 9 inbred lines were significantly reduced in comparison with normal nitrogen level. The nitrogen accumulation in roots of PH4CV, B73 and XY4 increased significantly, while the other 6 lines decreased significantly. In addition, only XY4 had a high nitrogen absorption and utilization efficiency. The comprehensive analysis showed that XY4 was a low-nitrogen high efficiency maize inbred line.

Key words: Maize, Nitrogen, Biomass accumulation, Root morphology, Principal components analysis, Cluster analysis

表1

两个氮素水平下不同玉米自交系生物量和根系性状"

性状
Trait
处理
Treatment
性状表现Performances of traits F
均值
Mean
最大值
Max
最小值
Min
变异系数(%)
CV
低氮效应(%)
Low nitrogen effect
基因型
Genotype
氮素
Nitrogen
基因型×氮素
Genotype×Nitrogen
总根长(cm/株) NN 199.71 615.60 61.31 54.61 1.86 167.06** 3.69ns 104.95**
Total root length (cm/plant) (TRL)
LN 203.43 331.26 76.36 37.89
根表面积(cm2/株) NN 17.58 48.92 6.30 48.51 8.63 76.97** 38.20** 48.53**
Root surface area (cm2/plant) (RSA) LN 19.10 35.78 8.01 40.43
根平均直径 NN 0.30 0.37 0.23 12.54 2.69 51.99** 20.35** 30.99**
Root average diameter (mm) (RAD)
LN 0.31 0.44 0.21 16.24
根体积(cm3/株) NN 0.13 0.31 0.05 44.17 12.98 29.56** 29.08** 14.26**
Root volume (cm3/plant) (RV) LN 0.15 0.32 0.06 47.88
侧根数(个/株) NN 360.19 1 035.40 126.80 49.79 15.35 115.50** 147.76** 49.16**
Lateral root number (No./plant) (LRN) LN 415.47 776.40 212.40 39.88
初生根长(cm/株) NN 28.19 40.16 19.88 19.82 25.62 32.56** 479.50** 17.24**
Primary root length (cm/plant) (PRL) LN 35.42 49.92 17.80 22.52
地上部干重(mg/株) NN 119.88 202.80 60.74 33.24 -20.73 42.69** 217.92** 7.73**
Shoot dry weight (mg/plant) (SDW) LN 95.03 175.16 51.08 31.79
根干重(mg/株) NN 17.30 33.56 8.00 39.39 90.25 28.12** 798.92** 8.35**
Root dry weight (mg/plant) (RDW) LN 32.91 59.02 7.34 36.99
单株干重(mg/株) NN 137.57 236.36 69.34 32.76 -6.79 55.14** 26.85** 9.36**
Dry weight per plant (mg/plant) (PDW) LN 128.22 235.38 63.14 31.58
根冠比Root-shoot ratio (R/S) NN 0.146 0.268 0.091 23.03 136.69 21.67** 2 793.48** 12.52**
LN 0.345 0.584 0.131 24.89

表2

两个氮素水平下不同玉米自交系苗期10个性状间相关性分析"

LN条件下性状
Trait under LN condition
NN条件下性状Trait under NN condition
SDW RDW PDW R/S PRL TRL RSA RAD RV LRN
SDW -0.82** -0.99** -0.04 -0.42* -0.70** -0.74** -0.29 0.75** 0.43**
RDW -0.79** -0.89** -0.50** -0.46** -0.70** -0.76** -0.33* 0.79** 0.44**
PDW -1.00** -0.85** -0.09 -0.45** -0.71** -0.76** -0.31 0.78** 0.43**
R/S -0.02 -0.57** -0.07 -0.12 -0.14 -0.18 -0.11 0.21 0.14
PRL -0.15 -0.13 -0.14 -0 -0.28 -0.41* -0.41* 0.50** 0.09
TRL -0.07 -0.43** -0.12 -0.65** -0.01 -0.92** -0.06 0.79** 0.76**
RSA -0.07 -0.43** -0.12 -0.64** -0.06 -0.98** -0.27 0.95** 0.74**
RAD -0 -0.16 -0.03 -0.26 -0.22 -0.44** -0.26 0.52** 0.03
RV -0.15 -0.48** -0.20 -0.59** -0.16 -0.85** -0.94** -0.02 0.64**
LRN -0.12 -0.47** -0.18 -0.66** -0.04 -0.91** -0.90** -0.37* 0.82**

图1

两种氮素水平下玉米幼苗生物量和根系性状的主成分分析 A、B分别表示NN条件下10个性状在主成分1和主成分2的投影和在主成分2和主成分3的投影,C、D分别表示在LN条件下10个性状在主成分1和主成分2的投影和在主成分2和主成分3的投影。点表示35份玉米自交系的位置,线代表量化各性状对主成分贡献的大小和方向的向量。PRL、RAD、LRN、SDW、PDW、RSA、RV、RDW、TRL和R/S分别表代初生根长、根平均直径、侧根数、地上部干重、单株干重、根表面积、根体积、根干重、总根长和根冠比。下同"

图2

两种氮素水平下35份玉米自交系基于不同性状的聚类分析"

图3

基于LN效应值的35份玉米自交系的聚类分析及各性状变异 A表示基于不同性状的LN效应值对35份玉米自交系的聚类;B表示不同组中的10个性状在正常氮素和低氮水平下的变化,图例中1、2、3、4和5代表不同组别;“*”表示两氮素处理差异显著(P<0.05);不同小写字母代表同一氮素水平下组间差异显著(P<0.05)"

表3

9份玉米自交系氮素含量及氮素生理效率"

自交系
Intred line
氮素处理
Nitrogen
treatment
地上部氮素积累量(mg/株)
Shoot N accumulation
amount (mg/plant)
根系氮素积累量(mg/株)
Root N accumulation
amount (mg/plant)
单株氮素积累量(mg)
N accumulation
amount per plant
氮素生理利用效率(%)
Physiological use
efficiency of N
Chang7-2 NN -02.680a -00.385a -03.065a 057.140b
LN -00.607b -00.129b -00.736b 131.820a
变化Change (%) -77.4 -66.5 -76.0 130.7
Zong3 NN -04.588a -00.337a -04.925a 048.030b
LN -00.900b -00.268b -01.167b 122.170a
变化Change (%) -80.4 -20.5 -76.3 154.3
PH6WC NN -02.261a -00.198a -02.460a 043.670b
LN -00.427b -00.114b -00.540b 131.640a
变化Change (%) -81.1 -42.7 -78.0 201.5
87-1 NN -01.872a -00.281a -02.153a 058.330b
LN -00.505b -00.103b -00.608b 182.130a
变化Change (%) -73.0 -63.3 -71.7 212.2
Mo17 NN -01.577a -00.168a -01.745a 055.900b
LN -00.429b -00.136b -00.565b 158.530a
变化Change (%) -72.8 -19.0 -67.6 183.6
B73 NN -02.417a -00.147b -02.565a 040.810b
LN -01.073b -00.210a -01.283b 077.930a
变化Change (%) -55.6 -42.7 -50.0 091.0
XY4 NN -03.179a -00.250b -03.429a 055.090b
LN -01.061b -00.291a -01.351b 149.190a
变化Change (%) -66.6 -16.3 -60.6 170.8
PH4CV NN -01.067a -00.138b -01.206a 062.180b
LN -00.695b -00.223a -00.918b 101.500a
变化Change (%) -34.9 -61.4 -23.8 063.2
Zheng58 NN -01.236a -00.191a -01.427a 057.140b
LN -00.619b -00.166b -00.785b 147.730a
变化Change (%) -49.9 -13.0 -45.0 158.5
[1] Lynch J P . Steep,cheap and deep:an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013,112(2):347-357.
[2] Mi G H, Chen F J, Wu Q P , et al. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Science China Life Sciences, 2010,53(12):1369-1373.
[3] Zhang X, Davidson E A, Mauzerall D L , et al. Managing nitrogen for sustainable development. Nature, 2015,528:51-59.
[4] Guo J H, Liu X J, Zhang Y , et al. Significant acidification in major Chinese croplands. Science, 2010,327(5968):1008-1010.
[5] Mueller N D, Gerber J S, Johnston M , et al. Closing yield gaps through nutrient and water management. Nature, 2012,490:254-257.
[6] Steffen W, Richardson K, Rockström J , et al. Planetary boundaries:Guiding human development on a changing planet. Science, 2015,347(6223):1259855.
[7] Tegeder M, Masclaux-Daubresse C . Source and sink mechanisms of nitrogen transport and use. New Phytologist, 2018,217(1):35-53.
[8] 裴雪霞, 王姣爱, 党建友 , 等. 耐低氮小麦基因型筛选指标的研究. 小麦研究, 2007(2):1-6.
[9] 张楚, 张永清, 路之娟 , 等. 苗期耐低氮基因型苦荞的筛选及其评价指标. 作物学报, 2017,43(8):1205-1215.
[10] Saiz-Fernández I, De Diego N, Sampedro M C , et al. High nitrate supply reduces growth in maize,from cell to whole plant. Journal of Plant Physiology, 2015,173:120-129.
[11] 春亮 . 玉米氮高效品种选育及根系形态对低氮反应的遗传分析. 北京:中国农业大学, 2004.
[12] 李丹丹, 宗俊勤, 陈静波 , 等. 耐低氮假俭草种质筛选. 草业科学, 2018,35(10):2463-2470.
[13] 邱双, 闫双堆, 刘利军 . 不同谷子品种耐低磷能力研究. 作物杂志, 2017(2):139-144.
[14] 张鹏飞, 张翼飞, 王玉凤 , 等. 膜下滴灌氮肥分期追施量对玉米氮效率及土壤氮素平衡的影响. 植物营养与肥料学报, 2018,24(4):915-926.
[15] 王泽林, 白炬, 李阳 , 等. 氮肥施用和地膜覆盖对旱作春玉米氮素吸收及分配的影响. 植物营养与肥料学报, 2019,25(1):74-84.
[16] 王艳, 米国华, 陈范骏 , 等. 玉米氮素吸收的基因型差异及其与根系形态的相关性. 生态学报, 2003,23(2):297-302.
[17] Gao K, Chen F, Yuan L , et al. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant,Cell and Environment, 2015,38(4):740-750.
[18] 冯万军, 张义荣, 姚颖垠 , 等. 玉米杂交种与亲本苗期根系蛋白差异表达谱分析. 自然科学进展, 2009,19(6):619-627.
[19] 薛玲珠, 孙敏, 高志强 , 等. 深松蓄水增量播种对旱地小麦植株氮素吸收利用、产量及蛋白质含量的影响. 中国农业科学, 2017,50(13):2451-2462.
doi: 10.3864/j.issn.0578-1752.2017.13.005
[20] Chen C J, Chen H, He Y H , et al. TBtools,a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv, 2018: 289660.
[21] Chun L, Mi G, Li J , et al. Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant and Soil, 2005,276(1/2):369-382.
[22] Hardtke C S . Root development-branching into novel spheres. Current Opinion in Plant Biology, 2006,9(1):66-71.
[23] Abdel-Ghani A H, Kumar B, Reyes-Matamoros J , et al. Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L. ) inbred lines grown under contrasting nitrogen levels. Euphytica, 2013,189(1):123-133.
[24] Garnett T, Conn V, Kaiser B N . Root based approaches to improving nitrogen use efficiency in plants. Plant,Cell and Environment, 2009,32(9):1272-1283.
[25] Linkohr B I, Williamson L C, Fitter A H , et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 2002,29(6):751-760.
[26] Zhan A, Lynch J P . Reduced frequency of lateral root branching improves N capture from low-N soils in maize. Journal of Experimental Botany, 2015,66(7):2055-2065.
[27] Liu J, Li J, Chen F , et al. Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L. ). Plant and Soil, 2008,305(1/2):253-265.
[28] Guo H, York L M . Reallocation to lateral and early-emerging axial roots allows maize (Zea mays L. ) with reduced nodal root number to more efficiently forage for nitrate. BioRxiv, 2019:533042.
[29] 李强, 罗延宏, 谭杰 , 等. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014,22(10):1190-1199.
[30] 刘宗华, 卫晓轶, 汤继华 , 等. 低氮胁迫对不同基因型玉米根部性状的影响. 玉米科学, 2008(5):50-53,57.
[31] 刘宗华, 卫晓轶, 胡彦民 , 等. 低氮胁迫对不同基因型玉米生物产量和氮吸收率动态变化的影响. 玉米科学, 2010,18(5):53-59.
[32] Xu G, Fan X, Miller A J . Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012,63:153-182.
[33] 姜琳琳, 韩立思, 韩晓日 , 等. 氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响. 植物营养与肥料学报, 2011,17(1):247-253.
doi: 10.11674/zwyf.2011.0134
[34] 姜琪, 陈志伟, 刘成洪 , 等. 大麦地方品种苗期耐低氮筛选和鉴定指标的研究. 华北农学报, 2019,34(1):148-155.
[1] 花宇辉,高志强. 秋玉米SPAD值的光谱估算模型研究[J]. 作物杂志, 2019, (5): 173–179
[2] 陈丽,张璐鑫,吴枫,李真,龙兴洲,杨玉锐,尹宝重. 河北平原麦玉两熟轮耕模式对土壤特性及作物产量的影响[J]. 作物杂志, 2019, (5): 143–150
[3] 董智强,王萌萌,李鸿怡,薛晓萍,潘志华,侯英雨,陈辰,李楠,李曼华. WOFOST模型对山东省夏玉米发育期与产量模拟的适用性评价[J]. 作物杂志, 2019, (5): 159–165
[4] 张中伟,杨海龙,付俊,谢文锦,丰光. 玉米粒长性状主基因+多基因遗传分析[J]. 作物杂志, 2019, (5): 37–40
[5] 李洪涛,许瀚元,李景芳,祝庆,迟铭,王军. 玉米叶绿素含量基因效应分析[J]. 作物杂志, 2019, (5): 46–51
[6] 闫威,李国龙,李智,曹阳,张少英. 施氮量和密度互作对全覆膜旱作甜菜光合特性和块根产量的影响[J]. 作物杂志, 2019, (4): 100–106
[7] 万晓菊,张国强,王克如,谢瑞芝,沈东萍,陈江鲁,刘朝巍,李少昆. 北疆春玉米覆膜、滴灌技术效应研究[J]. 作物杂志, 2019, (4): 107–112
[8] 崔月峰,孙国才,卢铁钢,王桂艳,王健,黄文佳,栾和林. 不同秸秆还田方式对北方超级稻氮素吸收利用的影响[J]. 作物杂志, 2019, (4): 164–169
[9] 王健,姚丹丹,郝茹雪,于青松,韩金玲,周印富,王文颇. 河北省冀东地区9个主栽春玉米品种的灌浆特性[J]. 作物杂志, 2019, (4): 120–124
[10] 周芸,李永梅,范茂攀,王自林,徐智,张丹,赵吉霞. 有机肥等氮替代化肥对红壤团聚体及玉米产量和品质的影响[J]. 作物杂志, 2019, (4): 125–132
[11] 谷娇娇,胡博文,贾琰,沙汉景,李经纬,马超,赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019, (4): 176–182
[12] 王楠,李穆,路明,高婷婷,郑淑波,张志军,刘文国. 美国先锋公司玉米品种在我国的应用分析[J]. 作物杂志, 2019, (4): 24–29
[13] 郭红亮,刘永忠,常海霞,靳鲲鹏,李万星,曹晋军,李丹,李小霞. 山西省中晚熟区玉米穗部相关性状与收获期子粒含水率的多重分析[J]. 作物杂志, 2019, (4): 37–41
[14] 平文静,郭媛,黄亚群,陈景堂,祝丽英,赵永锋,郭晋杰. 玉米亲子代锌铁吸收和分配的研究[J]. 作物杂志, 2019, (4): 49–54
[15] 郭庆瑞,王梦飞,郭凤琴,殷建军,张小娟,王力. 山西高寒冷凉区粮饲兼用型玉米品种的综合评价[J]. 作物杂志, 2019, (4): 61–68
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王海涛,刘存敬,唐丽媛,张素君,李兴河,蔡肖,张香云,张建宏. 河北省杂交棉培育现状及发展趋势[J]. 作物杂志, 2019, (5): 1 –8 .
[2] 刘念析,陈亮,厉志,刘宝泉,刘佳,衣志刚,董志敏,王曙明. 大豆抗病分子标记的研究进展[J]. 作物杂志, 2019, (4): 10 –16 .
[3] 黄玉芳,叶优良,赵亚南,岳松华,白红波,汪洋. 施氮量对豫北冬小麦产量及子粒主要矿质元素含量的影响[J]. 作物杂志, 2019, (5): 104 –108 .
[4] 孟凡来,郭华春. UV-B辐射增强对甘薯光合特性和紫外吸收物质的影响[J]. 作物杂志, 2019, (5): 114 –119 .
[5] 张艳华,常旭虹,王德梅,陶志强,王艳杰,杨玉双,赵广才. 不同土壤条件下追施锌肥对小麦产量及品质的影响[J]. 作物杂志, 2019, (5): 109 –113 .
[6] 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 15 –21 .
[7] 王永行,单飞彪,闫文芝,杜瑞霞,杨钦方,刘春晖,白立华. 基于向日葵DUS测试的遗传多样性分析及代码分级[J]. 作物杂志, 2019, (5): 22 –27 .
[8] 张中伟,杨海龙,付俊,谢文锦,丰光. 玉米粒长性状主基因+多基因遗传分析[J]. 作物杂志, 2019, (5): 37 –40 .
[9] 张永芳,钱肖娜,王润梅,史鹏清,杨荣. 不同大豆材料的抗旱性鉴定及耐旱品种筛选[J]. 作物杂志, 2019, (5): 41 –45 .
[10] 李洪涛,许瀚元,李景芳,祝庆,迟铭,王军. 玉米叶绿素含量基因效应分析[J]. 作物杂志, 2019, (5): 46 –51 .