作物杂志,2019, 第5期: 143–150 doi: 10.16035/j.issn.1001-7283.2019.05.024

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

河北平原麦玉两熟轮耕模式对土壤特性及作物产量的影响

陈丽1,张璐鑫2,吴枫1,李真1,龙兴洲1,杨玉锐1,尹宝重2   

  1. 1 河北省邢台市农业科学研究院,054000,河北邢台
    2 河北农业大学植物保护学院,071001,河北保定
  • 收稿日期:2019-03-06 修回日期:2019-06-20 出版日期:2019-10-15 发布日期:2019-11-07
  • 通讯作者: 龙兴洲
  • 作者简介:陈丽,农艺师,主要从事作物高产栽培研究工作
  • 基金资助:
    邢台市科技支撑项目冬小麦节水品种筛选及水肥高效栽培技术研究与示范(2018ZC65);现代农业科技创新工程项目

Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain

Chen Li1,Zhang Luxin2,Wu Feng1,Li Zhen1,Long Xingzhou1,Yang Yurui1,Yin Baozhong2   

  1. 1 Hebei Xingtai Academy of Agricultural Sciences, Xingtai 054000, Hebei, China
    2 College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2019-03-06 Revised:2019-06-20 Online:2019-10-15 Published:2019-11-07
  • Contact: Xingzhou Long

摘要:

于2016-2017年冬小麦-夏玉米一年两熟生长季,设小麦季深松+玉米季免耕(S-N)、小麦季旋耕+玉米季深松(R-S)和小麦季深松+玉米季深松(S-S)处理,以常规耕作方式小麦季旋耕+玉米季免耕(R-N)为对照,在河北平原中部南和县对不同轮耕模式下土壤理化性状、微生物特性、水热状况、产量及水分利用效率进行研究。结果表明,对比小麦播种前,R-S和S-S处理土壤非毛管孔隙度均有显著上升,0~15和15~30cm土层分别平均提高15.2%和18.0%;R-N处理0~15和15~30cm土层非毛管孔隙度比小麦播前分别下降11.3%和7.3%。单季或两季深松可显著提高农田土壤碱性磷酸酶、多酚氧化酶、过氧化氢酶和脲酶活性,其中R-S和S-S处理提高最明显。单季深松或两季深松均可显著提高微生物生物量碳和活跃微生物量,0~30cm土层分别平均提高6.3%和20.6%。两季深松土壤呼吸平均提高12.4%,且呼吸速率变幅增大。深松可增大土壤周年温度变幅,提高水分利用效率,两季深松可显著提高周年作物产量达8.62%。深松可改善土壤物理性状,提高作物产量,提高土壤关键酶活性和呼吸速率,扩大土壤温度日变幅,优化土壤微生物环境。

关键词: 河北平原, 小麦-玉米一年两熟, 轮耕模式, 土壤特性, 产量

Abstract:

In the double cropping growing season of winter wheat-summer maize from 2016 to 2017, four rotation tillage treatments were established. Setting wheat season subsoiling+maize season no-tillage (S-N), wheat season rotary tillage+maize season subsoiling (R-S), wheat season subsoiling+maize season subsoiling (S-S), and conventional tillage mode wheat season rotary tillage+maize season no-tillage (R-N) as the control. Soil physiology, microorganism characteristics, water and heat conditions, soil water use efficiency and grain yield of grain fields under different rotation modes were studied in Nanhe, central Hebei Plain. The results showed that: compared with before the sowing of wheat, the non-capillary porosity of R-S and S-S treatments increased significantly, and the avarage soil thickness of 0-15 and 15-30cm increased by 15.2% and 18.0%, respectively. R-N treatment 0-15 and 15-30cm soil layer non-capillary porosity ratio decreased by 11.3% and 7.3% before wheat sowing. Soil alkaline phosphatase (ALP), polyphenol oxidase (PPO), catalase (CAT) and urease (UU) activities were significantly increased by single-season or double-season subsoiling, especially by R-S and S-S treatments. Single season subsoiling or two season subsoiling could significantly increase the number of SMBC and active microorganisms, with an average increase of 6.3% and 20.6% in 0-30cm soil layer, respectively. The annual average soil respiration was increased by 12.4% and the variation of soil respiration rate was increased by two-season subsoiling rotation. Under different rotation tillage measures, the annual average soil temperature had little effect, but deep-loosening could increase the annual temperature variation of wheat fields. The water use efficiency (WUE) could also be promoted by single-season subsoiling or two-season subsoiling rotation. The annual crop yield could also be significantly increased by two-season subsoiling, with an average increase of 8.62%. The main conclusions are as follows: subsoiling can significantly improve soil physical properties, increase soil key enzyme activity and respiration rate, expand daily variation of soil temperature, and optimize soil microbial environment. Soil subsoiling can also significantly increase maize yield, of which two-season subsoiling treatment has the greatest yield increase.

Key words: Hebei Plain, Wheat-maize double cropping per year, Rotation mode, Soil property, Yield

表1

不同轮耕模式对土壤非毛管孔隙度和土壤分散系数的影响"

土层
Soil depth (cm)
处理
Treatment
非毛管孔隙度Non-capillary porosity 土壤分散系数Soil dispersion coefficient
小麦播前
Before the
sowing of wheat
小麦拔节
Wheat
jointing
玉米抽雄
Maize
tasseling
玉米收获
Maize
harvest
小麦播前
Before the
sowing of wheat
小麦拔节
Wheat
jointing
玉米抽雄
Maize
tasseling
玉米收获
Maize
harvest
0~15 R-N 11.5a 10.3b 9.2a 10.2b 10.6a 6.1a 5.8a 9.2a
S-N 11.3a 11.6a 9.1a 11.1b 10.1a 6.9a 4.3b 6.3b
R-S 11.6a 10.4b 9.3a 13.2a 10.3a 6.2a 4.1b 6.3b
S-S 11.5a 11.6a 9.5a 13.4a 10.4a 6.7a 3.9b 5.5c
15~30 R-N 10.9a 10.4b 5.2b 10.1c 9.6a 11.6a 7.1a 9.2a
S-N 11.1a 12.5a 11.9a 11.3b 9.4a 8.2b 5.8b 6.3b
R-S 10.8a 10.7b 5.3b 12.2b 9.5a 11.8a 5.1b 5.3c
S-S 10.9a 12.9a 12.1a 13.4a 9.4a 8.2b 4.8b 5.2c
30~50 R-N 9.5a 6.1d 2.6b 2.9b 9.1a 10.6a 13.9a 7.1a
S-N 9.5a 7.6c 3.5a 3.8a 9.2a 7.6b 11.1b 6.1b
R-S 9.6a 9.2b 2.4b 3.9a 9.2a 10.6a 11.2b 5.9b
S-S 9.4a 10.1a 3.6a 4.1a 8.9a 7.2b 9.1c 4.3c

表2

不同轮耕模式对土壤关键酶活性的影响"

项目
Item
生育阶段
Growth stage
0~15cm 15~30cm
R-N S-N R-S S-S R-N S-N R-S S-S
脲酶 小麦播前Before the sowing of wheat 0.22a 0.23a 0.23a 0.25a 0.18a 0.13ab 0.16ab 0.14ab
Urease [mg/(g·24h)] 小麦拔节Wheat jointing 0.25a 0.28a 0.27a 0.27a 0.39b 0.51a 0.37b 0.50a
玉米抽雄Maize tasseling 0.20c 0.26b 0.30a 0.30a 0.24c 0.37a 0.31a 0.32a
玉米收获Maize harvest 0.19c 0.24ab 0.28a 0.29a 0.18a 0.15ab 0.22a 0.19a
CAT [mL/(g·h)] 小麦播前Before the sowing of wheat 2.23a 2.35a 2.16a 2.13a 2.92a 3.01a 3.01a 2.79ab
小麦拔节Wheat jointing 2.49c 2.65b 2.47c 3.58a 3.12b 4.32a 3.09b 4.11a
玉米抽雄Maize tasseling 2.29c 4.14a 2.90b 3.99a 2.88c 3.94a 2.89c 3.55b
玉米收获Maize harvest 2.26b 2.59a 2.49a 2.51a 3.01b 3.21a 3.19a 2.99b
ALP [g/(kg)] 小麦播前Before the sowing of wheat 24.55ab 26.32a 26.04a 25.76ab 31.52ab 32.52ab 32.14ab 33.08a
小麦拔节Wheat jointing 27.39b 28.97b 25.97c 39.41a 35.64b 40.62a 36.01b 41.13a
玉米抽雄Maize tasseling 28.37d 37.16b 33.11c 42.33a 40.31b 45.31a 39.87b 45.92a
玉米收获Maize harvest 25.09c 28.37a 28.26a 27.31ab 31.34c 33.97b 35.44a 35.69a
PPO [μg/g·min] 小麦播前Before the sowing of wheat 0.39a 0.41a 0.39a 0.38a 0.75ab 0.76ab 0.78ab 0.83a
小麦拔节Wheat jointing 0.45b 0.50a 0.46b 0.60a 0.85b 0.94a 0.88b 1.03a
玉米抽雄Maize tasseling 0.44c 0.57b 0.66a 0.63a 0.91c 1.15b 1.10b 1.32a
玉米收获Maize harvest 0.40b 0.52a 0.50a 0.49a 0.76b 0.88a 0.88a 0.91a

表3

不同轮耕模式对SMBC含量和活跃微生物量的影响"

项目
Item
生育阶段
Growth stage
0~15cm 15~30cm
R-N S-N R-S S-S R-N S-N R-S S-S
SMBC含量(mg/kg) 小麦播前Before the sowing of wheat 158.20a 154.32a 156.30a 155.90a 105.61a 102.30a 105.46a 104.31a
SMBC content 小麦拔节Wheat jointing 166.21b 164.32b 170.12a 173.24a 171.21b 181.21a 171.67b 188.32a
玉米抽雄Maize tasseling 175.34c 192.34b 204.60ab 215.60a 185.34d 200.14c 214.69b 229.64a
玉米收获Maize harvest 158.60a 165.08a 163.97a 163.20a 103.22b 106.89ab 108.90a 109.20a
活跃微生物量(mg/kg) 小麦播前Before the sowing of wheat 25.32a 25.61a 25.48a 26.03a 5.39c 5.36c 6.04b 16.11a
Number of active microorganisms 小麦拔节Wheat jointing 95.37b 100.12a 98.74a 97.63a 44.15b 69.74a 65.16a 64.32a
玉米抽雄Maize tasseling 106.91c 117.11b 125.40a 129.10a 64.15c 85.67b 91.11a 98.12a
玉米收获Maize harvest 25.31b 30.11a 31.67a 30.85a 20.16b 30.14a 30.04a 29.61a

图1

不同轮耕模式土壤呼吸速率与温度 图(a)和(c)分别是土壤呼吸速率动态和呼吸速率变幅;图(b)和(d)分别是10cm处土壤温度动态和温度变幅"

表4

不同轮耕模式对农田土壤储耗水特征的影响"

处理
Treatment
总耗水量(mm)
Total water
consumption
耗水量(mm)
Water consumption
0~200cm土体储水变化(mm)
Water storage in
0~200cm soil mass
产量Yield (kg/hm2) WUE
(kg/kg)
0~60mm 60~120mm 120~200mm 小麦Wheat 玉米Maize 周年Anniversary
R-N 814.3a 32.1a 20.3a 17.9a -61.2 7 507.0b 8 712.6b 16 219.6b 20.13c
S-N 781.9b 13.6b 15.8b 8.5c -37.9 8 155.1a 8 887.2b 17 042.3a 22.23ab
R-S 790.3b 16.2b 19.1ab 11.0b -46.3 7 596.3b 9 697.1a 17 293.4a 21.15b
S-S 767.9c 6.9c 12.1c 5.0d -23.9 8 170.4a 9 471.3a 17 641.7a 23.13a
[1] Castellano M J, Valone T J . Livestock,soil compaction and water infiltration rate:Evaluating a potential desertification recovery mechanism. Journal of Arid Environments, 2007,71(1):97-108.
[2] Zhang J, Niu J M, Bao T L G , et al. Human induced dryland degradation in Ordos Plateau,China,revealed by multilevel statistical modeling of normalized difference vegetation index and rainfall time-series. Journal of Arid Land, 2014,6(2):219-229.
[3] Prosser J I, Bohannan B J M, Curtis T P , et al. The role of ecological theory in microbial ecology. Nature Reviews Microbiology, 2007,5(5):384-392.
[4] Kasper M, Buchan G D, Mentler A , et al. Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions. Soil Tillage and Research, 2009,105(2):192-199.
[5] 候贤清, 贾志宽, 韩清芳 , 等. 不同轮耕模式对旱地土壤结构及入渗蓄水特性的影响. 农业工程学报, 2012,28(5):85-94.
[6] Riley H C F, Bleken M A, Abrahamsen S , et al. Effects of alternative tillage systems on soil quality and yield of spring cereals on silty clay loam and sandy loam soils in the cool,wet climate of central Norway. Soil Tillage and Research, 2005,80(1/2):79-93.
[7] Zhou H, Lü Y Z, Yang Z C , et al. Influence of conservation tillage on soil aggregates features in north China Plain. Agricultural Sciences in China, 2007,6(9):1099-1106.
[8] Josa R, Hereter A . Effects of tillage systems in dryland farming on near-surface water content during the late winter period. Soil and Tillage Research, 2005,82(2):173-183.
[9] 邱红波, 何腾兵, 龙友华 , 等. 免耕栽培对玉米根系特征和产量的影响. 贵州农业科学, 2011,39(9):55-57.
[10] 梁建斌, 刘今河, 杨涛 . 不同耕作方式对玉米根系生长发育及土壤水分的影响. 安徽农业科学, 2006,34(11):2353-2354.
[11] 王宜伦, 李潮海, 王瑾 , 等. 缓/控释肥在玉米生产中的应用与展望. 中国农学通报, 2009,25(24):254-257.
[12] 李勇军, 曹庆军, 拉民 , 等. 不同耕作处理对土壤酶活性的影响. 玉米科学, 2012,20(3):111-114.
[13] 秦纪洪, 黄雪菊, 孙辉 , 等. 低温季节西南亚高山森林土壤多酚氧化酶动态研究. 土壤通报, 2012,43(5):1073-1079.
[14] Vance E D, Brookesa P C, Jenkinsona D S . An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987,19(6):703-707.
[15] 高云超, 朱文珊, 陈文新 . 秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究. 生态学杂志, 2001(2):30-36.
[16] Wang M, Liu X T, Zang J T , et al. Diurnal and seasonal dynamics of soil respiration at temperate leymus chinensis meadow steppes in western Songnen plain,China. Chinese Geographical Science, 2014,24(3):287-296.
[17] Hu J Z, Zhang W H, Li W Z , et al. Effect of plant community on anti-erodibility of lang under rehabilitation in beichuanhe basin. Acta Pedologica Sinica, 2004,41(6):854-863.
[18] Tian J R . Primary study on soil physical properties and anti-erodibility index in Lianjiabian are as of Ziwuling Mountain. Acta Pedologica Sinica, 1964,12(3):20-38.
[19] Chen H Q, Hou R X, Gong Y S , et al. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil and Tillage Research, 2009,106(1):85-94.
[20] Vita D P, Paolo E D, Fecondo G , et al. No-tillage and conventional tillage effects on durum wheat yield,grain quality and soil moisture content in southern Italy. Soil and Tillage Research, 2007,92(1/2):69-78.
[21] 赵建波 . 保护性耕作对农田土壤生态因子及温室气体排放的影响. 泰安:山东农业大学, 2008.
[22] 王玉玲, 李军, 柏炜霞 . 轮耕体系对黄土台塬麦玉轮作土壤生产性能的影响. 农业工程学报, 2015,31(1):107-116.
[23] 苏衍涛, 王凯荣, 刘迎新 , 等. 稻草覆盖对红壤旱地土壤温度和水分的调控效应. 农业环境科学学报, 2008,27(2):670-676.
[24] 尹宝重, 甄文超, 郭丽果 . 深松一体化播种对夏玉米农田土壤水热特征及微生物动态的影响. 中国生态农业学报, 2015,23(3):285-293.
[25] 张玉铭, 胡春胜, 毛任钊 , 等. 华北太行山前平原农田生态系统中氮、磷、钾循环与平衡研究. 应用生态学报, 2003,14(11):1863-1867.
[26] 吴海燕, 金荣德, 范作伟 , 等. 东北黑土区不同耕作方式土壤养分与酶活性的时空变化. 水土保持学报, 2009,23(6):154-157,170.
[27] 孙瑞莲, 赵秉强, 朱鲁生 , 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用. 植物营养与肥料学报, 2003,9(4):406-410.
doi: 10.11674/zwyf.2003.0405
[28] 唐先亮, 魏甲彬, 周玲红 , 等. 耕作方式对稻田土壤微生物量碳氮的动态影像. 作物研究, 2016,30(3):282-287.
[29] 王彩霞, 王旭东, 朱瑞祥 . 保护性耕作对土壤结构体碳氮分布的影响. 自然资源学报, 2010,25(3):386-395.
doi: 10.11849/zrzyxb.2010.03.004
[1] 张艳华,常旭虹,王德梅,陶志强,王艳杰,杨玉双,赵广才. 不同土壤条件下追施锌肥对小麦产量及品质的影响[J]. 作物杂志, 2019, (5): 109–113
[2] 任永峰,路战远,赵沛义,高宇,刘广华,栗艳芳. 不同种植方式对旱地马铃薯水分利用及的影响[J]. 作物杂志, 2019, (5): 120–124
[3] 梁晓红,张瑞栋,黄敏佳,刘静,曹雄. 覆膜与施氮互作对高粱产量及水氮利用效率的影响[J]. 作物杂志, 2019, (5): 135–142
[4] 姜丽娜,张雅雯,朱娅林,赵凌霄. 施氮量对不同品种小麦物质积累、转运及产量的影响[J]. 作物杂志, 2019, (5): 151–158
[5] 董智强,王萌萌,李鸿怡,薛晓萍,潘志华,侯英雨,陈辰,李楠,李曼华. WOFOST模型对山东省夏玉米发育期与产量模拟的适用性评价[J]. 作物杂志, 2019, (5): 159–165
[6] 王劲松,董二伟,焦晓燕,武爱莲,白文斌,王立革,郭珺,韩雄,柳青山. 不同种植模式对高粱晋糯3号产量和养分吸收的影响[J]. 作物杂志, 2019, (5): 166–172
[7] 赵准,齐军仓,李剑,郭岩,令江瑞,李虎情. 新疆不同刈割期对春性大麦干草产量和青贮品质影响的研究[J]. 作物杂志, 2019, (5): 180–185
[8] 马一峰,梁茜,葛均筑,辛德财. 冬小麦济麦22和春小麦津强8号的产量形成差异分析[J]. 作物杂志, 2019, (5): 192–195
[9] 刘兴叶,邢宝龙,吴瑞香,王桂梅,刘飞. 晋北绿豆主要农艺性状变异及对产量构成的影响[J]. 作物杂志, 2019, (5): 69–75
[10] 马凡凡,邢素林,甘曼琴,刘佩诗,黄瑜,甘晓玉,马友华. 有机肥替代化肥对水稻产量、土壤肥力及农田氮磷流失的影响[J]. 作物杂志, 2019, (5): 89–96
[11] 刘晓亚,张立峰,张继宗,石文宾,张培月. 甘蓝型油菜对华北坝上冷凉环境的适应性[J]. 作物杂志, 2019, (5): 97–103
[12] 闫威,李国龙,李智,曹阳,张少英. 施氮量和密度互作对全覆膜旱作甜菜光合特性和块根产量的影响[J]. 作物杂志, 2019, (4): 100–106
[13] 万晓菊,张国强,王克如,谢瑞芝,沈东萍,陈江鲁,刘朝巍,李少昆. 北疆春玉米覆膜、滴灌技术效应研究[J]. 作物杂志, 2019, (4): 107–112
[14] 齐德强,赵晶晶,冯乃杰,郑殿峰,梁晓艳. 烯效唑(S3307)和胺鲜酯(DTA-6)对马铃薯叶与块茎糖代谢及产量的影响[J]. 作物杂志, 2019, (4): 148–153
[15] 阿不都卡地尔·库尔班,夏东,张巨松,崔建平,郭仁松,林涛. 滴灌频次对化学脱叶棉花产量和品质影响机制的研究[J]. 作物杂志, 2019, (4): 113–119
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王海涛,刘存敬,唐丽媛,张素君,李兴河,蔡肖,张香云,张建宏. 河北省杂交棉培育现状及发展趋势[J]. 作物杂志, 2019, (5): 1 –8 .
[2] 孟凡来,郭华春. UV-B辐射增强对甘薯光合特性和紫外吸收物质的影响[J]. 作物杂志, 2019, (5): 114 –119 .
[3] 花宇辉,高志强. 秋玉米SPAD值的光谱估算模型研究[J]. 作物杂志, 2019, (5): 173 –179 .
[4] 任永峰,路战远,赵沛义,高宇,刘广华,栗艳芳. 不同种植方式对旱地马铃薯水分利用及的影响[J]. 作物杂志, 2019, (5): 120 –124 .
[5] 时丽冉,郝洪波,崔海英,李明哲. 遮光对谷子光合性能及快速叶绿素荧光动力学特征的影响[J]. 作物杂志, 2019, (5): 125 –128 .
[6] 李春喜,李斯斯,邵云,马守臣,刘晴,翁正鹏,李晓波. 减氮条件下有机物料还田对麦田酶活性及其土壤碳氮含量的影响[J]. 作物杂志, 2019, (5): 129 –134 .
[7] 梁晓红,张瑞栋,黄敏佳,刘静,曹雄. 覆膜与施氮互作对高粱产量及水氮利用效率的影响[J]. 作物杂志, 2019, (5): 135 –142 .
[8] 姜丽娜,张雅雯,朱娅林,赵凌霄. 施氮量对不同品种小麦物质积累、转运及产量的影响[J]. 作物杂志, 2019, (5): 151 –158 .
[9] 董智强,王萌萌,李鸿怡,薛晓萍,潘志华,侯英雨,陈辰,李楠,李曼华. WOFOST模型对山东省夏玉米发育期与产量模拟的适用性评价[J]. 作物杂志, 2019, (5): 159 –165 .
[10] 王劲松,董二伟,焦晓燕,武爱莲,白文斌,王立革,郭珺,韩雄,柳青山. 不同种植模式对高粱晋糯3号产量和养分吸收的影响[J]. 作物杂志, 2019, (5): 166 –172 .