作物杂志,2019, 第4期: 49–54 doi: 10.16035/j.issn.1001-7283.2019.04.008

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米亲子代锌铁吸收和分配的研究

平文静,郭媛,黄亚群,陈景堂,祝丽英,赵永锋,郭晋杰   

  1. 河北农业大学农学院/国家玉米改良中心河北分中心,071000,河北保定
  • 收稿日期:2018-12-13 修回日期:2019-05-10 出版日期:2019-08-15 发布日期:2019-08-06
  • 通讯作者: 黄亚群
  • 作者简介:平文静,在读硕士,研究方向玉米遗传育种
  • 基金资助:
    河北省科技计划项目(16226323D-2);农作物种质资源保护项目玉米种质资源保护子课题(2017-2018NWB036-0405)

Study on the Absorption and Distribution of Zinc and Iron between Maize Hybird and Its Parents

Ping Wenjing,Guo Yuan,Huang Yaqun,Chen Jingtang,Zhu Liying,Zhao Yongfeng,Guo Jinjie   

  1. College of Agronomy, Hebei Agricultural University/Hebei Sub-Center of National Maize Improvement Center, Baoding 071000, Hebei, China
  • Received:2018-12-13 Revised:2019-05-10 Online:2019-08-15 Published:2019-08-06
  • Contact: Yaqun Huang

摘要:

以玉米子粒高锌铁含量自交系NXR22(母本)、子粒低锌铁含量自交系NXR12(父本)及其配制的杂交种(F1)为供试材料,比较双亲及其后代不同穗位的叶片、茎秆及子粒中锌和铁含量、积累量在吐丝期与成熟期间的差异,解析亲子代锌铁吸收与分配特征。研究结果表明:不同基因型玉米叶片、茎秆、子粒中锌铁含量和积累量存在显著差异。F1不同穗位的叶片和茎秆锌铁含量介于双亲之间,且偏向于子粒锌铁含量高的亲本;锌铁积累量显著高于双亲,表现出明显的杂种优势。从吐丝期到成熟期3个供试材料不同穗位的叶片和茎秆锌铁含量和积累量均表现出一定程度的增加。F1子粒中锌含量及积累量偏向于母本,表现出杂种优势;铁含量介于双亲之间,更偏向于母本。

关键词: 玉米, 锌, 铁, 吸收分配

Abstract:

Using high grain zinc and iron concentration parent NXR22 (female), low grain zinc and iron concentration parent NXR12 (male), and their F1, to analyze the concentration and accumulation of zinc and iron in different parts of leaves, stems, and grains, and the characteristics of zinc and iron absorption and distribution in parents and hybrid. The results showed that there were significant differences in zinc and iron concentration and accumulation in leaves, stems and grains of maize with different genotypes. The concentration of zinc and iron in leaves and stems of different ear positions of hybrids was between their parents and tended to the parents with high concentration of zinc-iron in grains. The accumulation of zinc and iron in leaves and stems of different ear positions of hybrids showed obvious heterosis, which was significantly higher than that of their parents. The concentration of zinc and iron in leaves and stems of parents and hybrids increased from silking stage to mature stage. The concentration of zinc in hybrid grain tended to be higher than that of the female parent, and the amount of accumulation showed heterosis. The concentration of iron in hybrid grain was between parents, and the accumulation tended to be higher than that of the female parent with high concentration of zinc and iron.

Key words: Maize (Zea mays L.), Zinc, Iron, Absorption and distribution

图1

F1和双亲不同叶位锌铁含量和积累量的比较 同一部位不同小写字母表示不同基因型在0.05水平上差异显著。下同"

表1

F1及双亲叶片锌铁积累量成熟期与吐丝期相对值(成熟期/吐丝期)"

叶片Leaf Zn Fe
NXR22 F1 NXR12 NXR22 F1 NXR12
穗上叶Upper Leaf 1.16 1.18 1.50 1.23 1.48 1.28
穗位叶Ear Leaf 1.42 1.31 2.20 1.91 2.66 1.93
穗下叶Lower Leaf 1.50 0.39 0.46 2.00 1.00 0.61

图2

F1和双亲不同部位茎锌、铁含量和积累量的比较"

表2

双亲及F1成熟期与吐丝期茎秆锌铁积累量相对比值(成熟期/吐丝期)"

茎秆Stem Zn Fe
NXR22 F1 NXR12 NXR22 F1 NXR12
穗上茎Upper stem 1.13 1.87 1.18 2.62 2.17 2.81
穗位茎Ear stem 0.39 3.18 0.51 0.46 2.42 2.00
穗下茎Lower stem 1.33 2.05 0.55 2.30 2.47 2.06

图3

F1和双亲子粒锌铁含量和积累量的比较"

[1] Chen Y, Barak P . Iron nutrition of plants in calcareous soils. Advances in Agronomy, 1982,35:217-240.
[2] Ghandilyan A, Vreugdenhil D, Aarts M G M . Progress in the genetic understanding of plant iron and zinc nutrition. Physiologia Plantarum, 2010,126(3):407-417.
[3] 高小宽, 黄亚群, 陈景堂 . 玉米自交系子粒中锌和铁含量的配合力分析. 植物遗传资源学报, 2008,9(1):36-40.
[4] Bänziger M, Long J . The potential for increasing iron and zinc density of maize through plant-breeding. Food and Nutrition Bulletin, 2000,21(4):397-400.
[5] Rengel Z, Romheld V, Marschner H . Uptake of zinc and iron by wheat genotypes differing in tolerance to zinc deficiency. Journal of Plant Physiology, 1998,152(4):433-438.
[6] 姜雯, 赵明, 樊堂群 . 粮食作物锌的吸收运转分配和改善子粒锌含量的理论与技术途径. 中国土壤与肥料, 2006(4):10-15.
[7] 刘藏珍 . 夏玉米锌吸收特点的研究. 河北农业大学学报, 1990,13(2):16-19.
[8] Stomph T J, Jiang W, Struik P C . Zinc biofortification of cereals:rice differs from wheat and barley. Trends in Plant Science, 2009,14(3):123-124.
[9] Prachi S, Imran S, Dharmendra S , et al. Uptake,distribution,and remobilization of iron and zinc among various tissues of wheat-Aegilops substitution lines at different growth stages. Acta Physiologiae Plantarum, 2017,39(8):1-12.
[10] 王庆成, 张军, 牛玉贞 , 等. 高产夏玉米养分吸收分配规律的研究. 土壤肥料, 1993(3):23-27.
[11] 郝虎林 . 富铁水稻铁营养生理特性的研究. 杭州:浙江大学, 2007.
[12] 文建成, 张忠林, 金寿林 , 等. 滇型杂交粳稻及其亲本稻米铁锌元素含量的分析. 中国农业科学, 2005,38(6):1182-1187.
[13] 李华雄, 杨克诚, 任纬 , 等. 玉米子粒铁含量杂种优势及相关分析. 华北农学报, 2007,22(6):135-138.
doi: 10.7668/hbnxb.2007.06.028
[14] 王芝棠 . 玉米杂交种的性状表现与亲本选配的探讨. 华北农学报, 1987,2(4):38-43.
doi: 10.3321/j.issn:1000-7091.1987.04.007
[15] Karim Md R, Zhang Y Q, Tian D , et al. Genotypic differences in zinc efficiency of Chinese maize evaluated in a pot experiment. Journal of the Science of Food and Agriculture, 2012,92(12):2552-2559.
[16] Maas F M, Wetering D A, Beusichem M L , et al. Characterization of Phloem iron and its possible role in the regulation of Fe-efficiency reactions. Plant Physiology, 1988,87(1):167-171.
[17] 张雅风 . 玉米不同自交系锌铁吸收分配特征及遗传分析. 保定:河北农业大学, 2018.
[18] Rogers E E, Eide D J, Guerinot M L . Altered selectivity in an Arabidopsis metal transporter. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(22):12356-12360.
[19] Chao D Y, Silva A, Baxter I , et al. Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genetics, 2012,8(9):e1002923.
[20] Cakmak S, Gülüt K Y, Marschner H , et al. Effect of zinc and iron deficiency on phytos 1 derophore release in wheat genotypes differing in zinc efficiency. Journal of Plant Nutrition, 1994,17(1):1-17.
[21] Ramesh S A, Choimes S, Schachtman D P . Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Molecular Biology, 2004,54(3):373-385.
[22] Lee Sichul, An Gynheung . Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell and Environment, 2009,32(4):408-416.
[1] 万晓菊,张国强,王克如,谢瑞芝,沈东萍,陈江鲁,刘朝巍,李少昆. 北疆春玉米覆膜、滴灌技术效应研究[J]. 作物杂志, 2019, (4): 107–112
[2] 王健,姚丹丹,郝茹雪,于青松,韩金玲,周印富,王文颇. 河北省冀东地区9个主栽春玉米品种的灌浆特性[J]. 作物杂志, 2019, (4): 120–124
[3] 周芸,李永梅,范茂攀,王自林,徐智,张丹,赵吉霞. 有机肥等氮替代化肥对红壤团聚体及玉米产量和品质的影响[J]. 作物杂志, 2019, (4): 125–132
[4] 王楠,李穆,路明,高婷婷,郑淑波,张志军,刘文国. 美国先锋公司玉米品种在我国的应用分析[J]. 作物杂志, 2019, (4): 24–29
[5] 郭红亮,刘永忠,常海霞,靳鲲鹏,李万星,曹晋军,李丹,李小霞. 山西省中晚熟区玉米穗部相关性状与收获期子粒含水率的多重分析[J]. 作物杂志, 2019, (4): 37–41
[6] 郭庆瑞,王梦飞,郭凤琴,殷建军,张小娟,王力. 山西高寒冷凉区粮饲兼用型玉米品种的综合评价[J]. 作物杂志, 2019, (4): 61–68
[7] 付景,孙宁宁,刘天学,马俊峰,杨豫龙,赵霞,穆心愿,李潮海. 穗期高温对玉米子粒灌浆生理及产量的影响[J]. 作物杂志, 2019, (3): 118–125
[8] 鲁守平,张华,孟昭东,穆春华. 利用分子标记技术对玉米自交系子粒油分的改良研究[J]. 作物杂志, 2019, (3): 24–28
[9] 叶文斌,何玉鹏,王昱,王瀚,赵庆芳. 碱化橄榄油加工废弃液对玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2019, (3): 185–191
[10] 董哲,杨武德,张美俊,朱洪芬,王超. 基于高光谱遥感的玉米叶片SPAD值估算模型研究[J]. 作物杂志, 2019, (3): 126–131
[11] 吴建忠,李绥艳,林红,马延华,潘丽艳,李东林,孙德全. 青贮玉米品质性状遗传变异及主成分分析[J]. 作物杂志, 2019, (3): 42–48
[12] 史亚兴,董会,卢柏山,赵久然,樊艳丽,徐丽,俞嫒年. 糯玉米不同采收期子粒降水及糊化特性研究[J]. 作物杂志, 2019, (3): 112–117
[13] 任洪雷,李春霞,龚士琛,李国良,扈光辉,王明泉,杨剑飞. 利用SPSS实现玉米杂交种主要农艺性状与产量的相关和通径分析[J]. 作物杂志, 2019, (3): 86–90
[14] 代希茜,詹和明,崔兴洪,赵银月,单丹丹,张亮,王铁军. 玉米大豆间作种植密度耦合数学模型及其优化方案研究[J]. 作物杂志, 2019, (2): 128–135
[15] 张冬梅,黄学芳,姜春霞,张伟,王晓娟,刘化涛,闫六英,刘恩科,翟广谦. 冷凉区旱地玉米微垄覆膜土壤水热及产量效应研究[J]. 作物杂志, 2019, (2): 115–121
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 梁海燕, 李海, 林凤仙, 张翔宇, 张知, 宋晓强. 不同糜子品种抗倒伏性田间鉴定及抗倒评价指标的筛选分析[J]. 作物杂志, 2018, (4): 37 –41 .
[2] 杜志敏,杨宇尘,夏原野,宫彦龙,闫志强,徐海. 收获期对北方杂交粳稻和常规粳稻品质的影响[J]. 作物杂志, 2018, (1): 147 –151 .
[3] 郜战宁,冯辉,薛正刚,杨永乾,王树杰,潘正茂. 28个大麦品种(系)主要农艺性状分析[J]. 作物杂志, 2018, (1): 77 –82 .
[4] 朱凯,张飞,柯福来,王艳秋,邹剑秋. 种植密度对适宜机械化栽培高粱品种产量及生理特性的影响[J]. 作物杂志, 2018, (1): 83 –87 .
[5] 范昱,王红力,何凤,赖弟利,王佳俊,宋月,向达兵. 后熟对苦荞子粒营养品质的影响[J]. 作物杂志, 2018, (1): 96 –101 .
[6] 尹春, 刘金泉, 张雄杰, 等. 甜荞种质资源生物学性状分析[J]. 作物杂志, 2009, (5): 48 –51 .
[7] 宋天庆, 赵慧珠. 高海拔粳稻新品种凤稻19号的选育及栽培技术[J]. 作物杂志, 2007, (3): 82 –83 .
[8] 韩相林, 程献云, 秦海英, 等. 小麦新品种濮麦9号配套栽培技术[J]. 作物杂志, 2005, (3): 51 .
[9] 秦志前. 陇东地区小麦复种胡萝卜垄作栽培技术[J]. 作物杂志, 2006, (1): 61 .
[10] 张小虎. 大豆抗旱育种技术[J]. 作物杂志, 1996, (2): 22 –23 .