作物杂志,2019, 第6期: 14–19 doi: 10.16035/j.issn.1001-7283.2019.06.003

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

黄淮南片麦区新育成品种(系)中3个矮秆基因分子标记检测及其与农艺性状的关系

曹廷杰1,张玉娥1,胡卫国1,杨剑1,赵虹1,王西成1,周艳杰1,赵群友2,李会群3   

  1. 1河南省农业科学院小麦研究所,450002,河南郑州
    2南阳市种子管理站,473000,河南南阳
    3濮阳市种子管理站,457000,河南濮阳
  • 收稿日期:2019-05-28 修回日期:2019-08-21 出版日期:2019-12-15 发布日期:2019-12-11
  • 作者简介:曹廷杰,副研究员,主要从事小麦育种及重要性状遗传分析研究
  • 基金资助:
    河南省农业科学院自主创新基金,河南省小麦产业技术体系(S2010-01-G03)

Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits

Cao Tingjie1,Zhang Yu’e1,Hu Weiguo1,Yang Jian1,Zhao Hong1,Wang Xicheng1,Zhou Yanjie1,Zhao Qunyou2,Li Huiqun3   

  1. 1Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Seed Management Department of Nanyang, Nanyang 473000, Henan, China
    3Seed Management Department of Puyang, Puyang 457000, Henan, China
  • Received:2019-05-28 Revised:2019-08-21 Online:2019-12-15 Published:2019-12-11

摘要:

利用矮秆基因RhtB1-b、RhtD1-b和Rht8特异分子标记对郑麦583和2015-2016年度参加河南省区域试验、河南省品种比较试验、国家黄淮南片区域试验及国家黄淮麦区品种比较试验的共630份小麦材料的基因型进行检测。结果表明,供试材料中检测到549份材料含有RhtB1-b基因;592份材料含有RhtD1-b基因;513份材料含有Rht8基因;422份材料同时含有3个矮秆基因,169份材料仅含有2个矮秆基因,说明3个主要的矮秆基因在河南小麦育种过程中被聚合使用。此外,分析发现,矮秆基因Rht8与株高和每公顷穗数,以及千粒重具有显著相关性。郑麦583等小麦品种聚合了这3个矮秆基因,具有优良的丰产性,通过选择和利用矮秆基因对于培育具有丰产性优点的小麦品种具有一定价值。

关键词: 小麦, 株高, 矮秆基因, 农艺性状

Abstract:

In this study, Zhengmai 583 and 630 materials derived from variety comparison test and regional trials of Yellow-Huai wheat area and Henan Province at 2015-2016 were screened by specific molecular marker of wheat dwarf genes RhtB1-b, RhtD1-b and Rht8. The results showed that 549 wheat materials carried RhtB1-b gene; 592 wheat materials carried RhtD1-b gene; 513 wheat materials carried Rht8 gene; 422 materials carried all 3 dwarfing genes, and additional 169 lines carried 2 dwarfing genes which indicated that the 3 dwarf genes had been fixed in Henan wheat breeding progress. Moreover, Rht8 showed significantly correlation with reducing plant height, spike number per hectare and increasing 1000-kernel weight. Zhengmai 583 carried 3 dwarf genes, showed excellent fertility. The selection and utilization of dwarf genes are of certain value for the cultivation of wheat varieties with high yield.

Key words: Wheat, Plant height, Dwarfing gene, Agronomic traits

表1

用于检测RhtB1-b、RhtD1-b及Rht8的分子标记"

检测基因名称
ID of detection gene
正向引物序列(5′-3′)
Sequence of forward primer (5′-3′)
反向引物序列(5′-3′)
Sequence of reverse primer (5′-3′)
退火温度(℃)
Annealing temperature
RhtB1-b TCTCCTCCCTCCCCACCCAAC CATCCCCATGGCCATCTCGAGCTA 63
RhtD1-b CGCGCAATTATTGGCCAGAGATAG CCCCATGGCCATCTCGAGCTGCTA 63
Rht8 CTCCCTGTACGCCTAAGGC CTCGCGCTACTAGCCATTG 55

图1

RhtB1-b (a)和RhtD1-b (b)引物在部分参试品种(系)中的扩增结果 M.Marker;1.农林10号;2.郑麦583;3.圣麦197;4.新良3号;5.光泰68;6.徐麦0054;7.泉麦890;8.西农501。下同"

图2

Rht8 4种变异在测试品种(系)中的PCR扩增结果 9.丰德存麦12号;10.龙科1221。a.192bp;b.202bp;c.165bp;d.174bp"

图3

631份小麦品种(系)中RhtB1-b、RhtD1-b、Rht8单倍型的分布频率"

表2

631份小麦品种(系)材料农艺性状的描述性统计"

性状Trait 最小值
Minimum
最大值
Maximum
平均值
Mean
标准差
Standard deviation
变异系数(%)
Coefficient of variation
株高Plant height (cm) 59.30 91.00 76.99 4.51 0.06
每公顷穗数Spike number per hectare (×106) 3.80 6.63 5.57 0.45 0.08
千粒重1000-kernel weight(g) 37.00 53.40 45.00 2.71 0.06
穗粒数Kernel number per spike 29.10 43.80 34.80 2.19 0.06

图4

4个农艺性状的散点矩阵图 柱状图表示4个性状的频率分布;左下角元件显示两两性状间的二维散点图(直线拟合线),右上角表示两两性状间的相关系数和显著性(“*” P<0.05)"

表3

Rht8对4个农艺性状的影响"

性状
Trait
位点
Locus
样本容量
Sample size
平均数
Mean
标准差
Standard error
最小值
Minimum
最大值
Maximum
F 显著性
Significance
株高Plant height (cm) Rht8(+) 513 76.70 4.44 59.30 89.00 11.53 0.001**
Rht8(-) 117 78.26 4.61 63.90 91.00
每公顷穗数Spike number per hectare (×106) Rht8(+) 513 5.54 0.36 3.80 6.63 10.12 0.002**
Rht8(-) 117 5.66 0.48 4.40 6.63
千粒重1000-kernel weight (g) Rht8(+) 513 45.10 2.66 37.80 53.40 4.08 0.044*
Rht8(-) 117 44.54 2.90 37.00 50.90
穗粒数Kernel number per spike Rht8(+) 513 34.93 2.58 29.10 43.80 15.19 0.000**
Rht8(-) 117 34.06 2.41 29.40 40.61
[1] Trewavas A J . The population/biodiversity paradox. agricultural efficiency to save wilderness. Plant Physiology, 2001,125(1):174-179.
doi: 10.1104/pp.125.1.174 pmid: 11154326
[2] Tian X, Wen W, Xie L , et al. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Frontiers in Plant Science, 2017,8:1379.
doi: 10.3389/fpls.2017.01379 pmid: 28848582
[3] Zhao K, Xiao J, Liu Y , et al. Rht23 (5Dq') likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theoretical and Applied Genetics, 2018,131(9):1825-1834.
doi: 10.1007/s00122-018-3115-5 pmid: 29855673
[4] Mo Y, Vanzetti L S, Hale I , et al. Identification and characterization of Rht25,a locus on chromosome arm 6AS affecting wheat plant height,heading time,and spike development. Theoretical and Applied Genetics, 2018,131(10):2021-2035.
doi: 10.1007/s00122-018-3130-6 pmid: 29959472
[5] Chen L, Du Y, Lu Q , et al. The Photoperiod-insensitive allele Ppd-D1a promotes earlier flowering in Rht12 dwarf plants of bread wheat. Frontiers in Plant Science, 2018,9:1312.
doi: 10.3389/fpls.2018.01312 pmid: 30405643
[6] Ellis M H, Bonnett D G, Rebetzke G J . A 192bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 2007,157(1):209-214.
doi: 10.1007/s10681-007-9413-7
[7] Peng J, Richards D E, Hartley N M , et al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999,400(6741):256-261.
doi: 10.1038/22307 pmid: 10421366
[8] Pearce S, Saville R, Vaughan S P , et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiology, 2011,157(4):1820-1831.
doi: 10.1104/pp.111.183657
[9] Korzun V, Röder M S, Ganal M W , et al. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1998,96(8):1104-1109.
doi: 10.1007/s001220050845
[10] Rebetzke G J, Richards R A . Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Australian Journal of Agricultural Research, 2000,51(2):235-246.
doi: 10.1071/AR99043
[11] Grover G, Sharma A, Gill H S , et al. Rht8 gene as an alternate dwarfing gene in elite Indian spring wheat cultivars. PLoS ONE, 2018,13(6):e0199330.
doi: 10.1371/journal.pone.0199330 pmid: 29927977
[12] Ellis M, Spielmeyer W, Gale K , et al. "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002,105(6):1038-1042.
doi: 10.1007/s00122-002-1048-4 pmid: 12582931
[13] 孙树贵, 李艳丽, 鲁敏 , 等. 67份美国小麦品种矮秆基因的分子标记检测. 麦类作物学报, 2013,33(6):1087-1092.
doi: 10.7606/j.issn.1009-1041.2013.06.004
[14] Guedira M, Brown-Guedira G, Sanford D V , et al. Distribution of Rht genes in modern and historic winter wheat cultivars from the eastern and central USA. Crop Science, 2010,50(5):1811-1822.
doi: 10.2135/cropsci2009.10.0626
[15] Ganeva G, Korzun V, Landjeva S , et al. Identification,distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica, 2005,145(3):305-315.
doi: 10.1007/s10681-005-1742-9
[16] Knopf C, Becker H, Ebmeyer E , et al. Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cereal Research Communications, 2008,36(4):553-560.
doi: 10.1556/CRC.36.2008.4.4
[17] Zhang X, Yang S, Zhou Y , et al. Distribution of the Rht-B1b,Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica, 2006,152(1):109-116.
doi: 10.1007/s10681-006-9184-6
[18] Mu M, Liu Y, Guo X , et al. Distribution of Rht-Blb and Rht-Dlb in wheat cultivars in Shandong detected by molecular markers. Molecular Plant Breeding, 2005,3(4):473-478.
doi: 10.1007/s001220051259 pmid: 22665180
[19] 周晓变, 赵磊, 陈建辉 , 等. 黄淮麦区小麦种质资源矮秆基因分布及其与农艺性状的关系. 麦类作物学报, 2017,37(8):997-1007.
[20] 周强, 袁中伟, 欧俊梅 , 等. 四川小麦主要矮秆基因的分子鉴定. 麦类作物学报, 2015,35(12):1624-1630.
[21] 王玉叶, 张海萍, 来得娥 , 等. 257份小麦品种资源中矮秆基因的分子检测. 安徽农业大学学报, 2013,40(5):860-866.
[22] 张德强, 宋晓朋, 冯洁 , 等. 黄淮麦区小麦品种矮秆基因Rht-B1b、Rht-D1b和Rht8的检测及其对农艺性状的影响. 麦类作物学报, 2016,36(8):975-981.
[23] Ellis M H, Rebetzke G J, Azanza F , et al. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theoretical and Applied Genetics, 2005,111(3):423-430.
doi: 10.1007/s00122-005-2008-6
[24] Botwright T L, Rebetzke G J, Condon A G , et al. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Annals of Botany, 2005,95(4):631-639.
doi: 10.1093/aob/mci069 pmid: 15655105
[25] 李杏普, 兰素缺, 冯延茹 . Rht-B1b,Rht-D1b,Rht-B1c小麦矮秆基因及其互作对小麦农艺性状的影响. 河北农业科学,2006(1):14-18.
[26] Du Y, Chen L, Wang Y , et al. The combination of dwarfing genes Rht4 and Rht8 reduced plant height,improved yield traits of rainfed bread wheat (Triticum aestivum L.). Field Crops Research, 2018,215:149-155.
doi: 10.1016/j.fcr.2017.10.015
[27] Wang Y, Du Y, Yang Z , et al. Comparing the effects of GA-responsive dwarfing genes Rht13 and Rht8 on plant height and some agronomic traits in common wheat. Field Crops Research, 2015,179:35-43.
doi: 10.1016/j.fcr.2015.04.010
[28] Zhang K, Wang J, Qin H , et al. Assessment of the individual and combined effects of Rht8 and Ppd-D1a on plant height,time to heading and yield traits in common wheat. The Crop Journal, 2019.
doi: 10.1080/00028899908984503 pmid: 10635545
[29] Jobson E M, Martin J M, Schneider T M , et al. The impact of the Rht-B1b,Rht-D1b,and Rht-8 wheat semi-dwarfing genes on flour milling,baking,and micronutrients. Cereal Chemistry, 2018,95(6):770-778.
doi: 10.1002/cche.2018.95.issue-6
[1] 张婷,逯腊虎,杨斌,袁凯,张伟,史晓芳. 黄淮麦区4省小麦种质农艺性状的比较分析[J]. 作物杂志, 2019, (6): 20–26
[2] 郭明明,樊继伟,王康君,孙中伟,张广旭,陈凤,李强,李筠,章跃树,赵广才. 潮盐土条件下不同小麦品种(系)子粒品质差异分析[J]. 作物杂志, 2019, (6): 134–139
[3] 王艳青,李勇军,李春花,卢文洁,孙道旺,尹桂芳,洪波,王莉花. 藜麦主要农艺性状与单株产量的相关和通径分析[J]. 作物杂志, 2019, (6): 156–161
[4] 王丽娜,常旭虹,王德梅,陶志强,王艳杰,杨玉双,赵广才. 不同土壤条件下追施硼肥对小麦产量和品质的影响[J]. 作物杂志, 2019, (6): 94–98
[5] 李虎,陈传华,刘广林,吴子帅,黄秋要,罗群昌. 种植密度和施氮量对桂育9号农艺性状及产量的影响[J]. 作物杂志, 2019, (6): 99–103
[6] 黄玉芳,叶优良,赵亚南,岳松华,白红波,汪洋. 施氮量对豫北冬小麦产量及子粒主要矿质元素含量的影响[J]. 作物杂志, 2019, (5): 104–108
[7] 张艳华,常旭虹,王德梅,陶志强,王艳杰,杨玉双,赵广才. 不同土壤条件下追施锌肥对小麦产量及品质的影响[J]. 作物杂志, 2019, (5): 109–113
[8] 陈丽,张璐鑫,吴枫,李真,龙兴洲,杨玉锐,尹宝重. 河北平原麦玉两熟轮耕模式对土壤特性及作物产量的影响[J]. 作物杂志, 2019, (5): 143–150
[9] 姜丽娜,张雅雯,朱娅林,赵凌霄. 施氮量对不同品种小麦物质积累、转运及产量的影响[J]. 作物杂志, 2019, (5): 151–158
[10] 马一峰,梁茜,葛均筑,辛德财. 冬小麦济麦22和春小麦津强8号的产量形成差异分析[J]. 作物杂志, 2019, (5): 192–195
[11] 刘兴叶,邢宝龙,吴瑞香,王桂梅,刘飞. 晋北绿豆主要农艺性状变异及对产量构成的影响[J]. 作物杂志, 2019, (5): 69–75
[12] 李晶,南铭. 俄罗斯和乌克兰引进冬小麦在我国西北地区的农艺性状表现和遗传多样性分析[J]. 作物杂志, 2019, (5): 9–14
[13] 高杰,李青风,李晓荣,封广才,彭秋. 贵州省不同年代糯高粱品种(系)农艺性状演变分析[J]. 作物杂志, 2019, (4): 17–23
[14] 王小明,廖政达,何奕响,孙晓波,韦增林,韦喜,苏喜德. 糖料蔗等价配方施肥农艺及品质性状比较分析[J]. 作物杂志, 2019, (4): 191–195
[15] 穆云森,温晓蕾,杨燕萍,刘欣欣,郭娟,崔敬,宋楠,左学丽,车永和. 新疆杂草黑麦基本农艺性状分析[J]. 作物杂志, 2019, (4): 42–48
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王海涛,刘存敬,唐丽媛,张素君,李兴河,蔡肖,张香云,张建宏. 河北省杂交棉培育现状及发展趋势[J]. 作物杂志, 2019, (5): 1 –8 .
[2] 黄玉芳,叶优良,赵亚南,岳松华,白红波,汪洋. 施氮量对豫北冬小麦产量及子粒主要矿质元素含量的影响[J]. 作物杂志, 2019, (5): 104 –108 .
[3] 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 15 –21 .
[4] 侯乾,王万兴,李广存,熊兴耀. 马铃薯连作障碍研究进展[J]. 作物杂志, 2019, (6): 1 –7 .
[5] 张婷,逯腊虎,杨斌,袁凯,张伟,史晓芳. 黄淮麦区4省小麦种质农艺性状的比较分析[J]. 作物杂志, 2019, (6): 20 –26 .
[6] 王永行,单飞彪,闫文芝,杜瑞霞,杨钦方,刘春晖,白立华. 基于向日葵DUS测试的遗传多样性分析及代码分级[J]. 作物杂志, 2019, (5): 22 –27 .
[7] 师赵康,赵泽群,张远航,徐世英,王宁,王伟杰,程皓,邢国芳,冯万军. 玉米自交系幼苗生物量积累及根系形态对两种氮素水平的反应及聚类分析[J]. 作物杂志, 2019, (5): 28 –36 .
[8] 张中伟,杨海龙,付俊,谢文锦,丰光. 玉米粒长性状主基因+多基因遗传分析[J]. 作物杂志, 2019, (5): 37 –40 .
[9] 张永芳,钱肖娜,王润梅,史鹏清,杨荣. 不同大豆材料的抗旱性鉴定及耐旱品种筛选[J]. 作物杂志, 2019, (5): 41 –45 .
[10] 李洪涛,许瀚元,李景芳,祝庆,迟铭,王军. 玉米叶绿素含量基因效应分析[J]. 作物杂志, 2019, (5): 46 –51 .