作物杂志,2020, 第1期: 1–8 doi: 10.16035/j.issn.1001-7283.2020.01.001

• 专题综述 •    下一篇

水稻重金属镉代谢的生理和分子机制研究进展

马卉,焦小雨,许学,李娟,倪大虎,许蓉芳,王钰,汪秀峰()   

  1. 安徽省农业科学院水稻研究所,230031,安徽合肥
  • 收稿日期:2019-06-20 修回日期:2019-10-14 出版日期:2020-02-15 发布日期:2020-02-23
  • 通讯作者: 汪秀峰 E-mail:xiufengwang66@sohu.com
  • 作者简介:马卉,研究方向为作物生物技术与转基因生物安全,E-mail: nkymahui@163.com
  • 基金资助:
    国家自然科学基金青年科学基金(31601289);耐除草剂转基因大豆SHZD32-01产业化研究(2019ZX08013001-011);安徽省科技重大专项“基于光谱技术的粮食作物种子质量智能分选设备研发与产业化”(18030701200)

Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice

Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng()   

  1. Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
  • Received:2019-06-20 Revised:2019-10-14 Online:2020-02-15 Published:2020-02-23
  • Contact: Xiufeng Wang E-mail:xiufengwang66@sohu.com

摘要:

水稻籽粒镉污染是一个世界范围内广泛存在和亟待解决的问题。有关控制镉积累的数量性状位点(QTL)和调节水稻镉积累及分配的重要功能基因被广泛研究和报道,揭示了水稻中镉积累的遗传多样性。本文主要回顾和总结水稻中镉的吸收、转运、积累和外排的生理和分子机制,概述目前学者们在培育“低镉大米”方面所做的一些研究,并讨论了降低籽粒中镉含量的现存问题及发展方向。

关键词: 水稻, 镉, 吸收与转运, 积累与外排, 基因工程

Abstract:

The cadmium (Cd) pollution in rice grains is a widespread problem that needs to be solved urgently. Quantitative trait locus (QTL) controlling Cd accumulation and important functional genes regulating Cd accumulation and distribution in rice have been extensively studied and reported. This paper mainly reviews and summarizes the physiological and molecular mechanisms of Cd uptake, transport, accumulation and exclusion in rice, in addition, we also summarized some of the current experimental results made by scholars in cultivating "low Cd rice", discussed existing problems and perspectives to reduce Cd in rice grains.

Key words: Rice (Oryza sativa L.), Cadmium, Absorption and transportation, Accumulation and exclusion, Genetic engineering

[1] 杨云帆, 夏卫生, 王小芳 . 镉污染农田的不同修复技术现状及展望. 中国农业信息,2017(23):49-51.
[2] Phuc H D, Kido T, Oanh N T P ,et al. Effects of aging on cadmium concentrations and renal dysfunction in inhabitants in cadmium-polluted regions in Japan. Journal of Applied Toxicology, 2017,37(9):1046-1052.
[3] Akesson A, Barregard L, Bergdahl I A , et al. Non-renal effects and the risk assessment of environmental cadmium exposure. Environmental Health Perspectives, 2014,122(5):431-438.
[4] Sharma A K . Evaluation of certain food additives and contaminants:Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives. FAO/WHO, 2012.
[5] 石一珺, 徐颖菲, 倪中应 , 等. 杭州市主要农作物对镉的富集差异及其影响因素. 浙江农业科学, 2019,60(7):1230-1233.
[6] Chen H, Tang Z, Wang P , et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution, 2018,238:482-490.
[7] Li H, Luo N, Li Y W , et al. Cadmium in rice:transport mechanisms,influencing factors,and minimizing measures. Environmental Pollution, 2017,224:622-630.
[8] Nishizono H, Ichikawa H, Suziki S , et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and Soil, 1987,101(1):15-20.
[9] Xiong J, An L Y, Lu H , et al. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta, 2009,230(4):755-765.
[10] 田连福 . 植物吸收、转运和积累镉的机理研究进展. 生命科学研究, 2015,19(2):176-184.
[11] 周志波, 易亚科, 陈光辉 . 水稻Cd吸收、转运机理研究进展. 作物杂志,2017(1):14-19.
[12] 张参俊, 尹洁, 张长波 , 等. 非选择性阳离子通道对水稻幼苗镉吸收转运特性的影响. 农业环境科学学报, 2015,34(6):1028-1033.
[13] Tian S K, Lu L L, Zhang J , et al. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere, 2011,84(1):63-69.
[14] Guo J B, Xu W Z, Ma M . The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. Journal of Hazardous Materials, 2012,199(1):309-313.
[15] 杨菲, 唐明凤, 朱玉兴 . 水稻对镉的吸收和转运的分子机理. 杂交水稻, 2015,30(3):2-8.
[16] Uraguchi S, Mori S, Kuramata M , et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009,60(9):2677-2688.
[17] Ishikawa S, Suzui N, Ito-Tanabata S , et al. Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107Cd tracer . BMC Plant Biology, 2011,11(1):172.
[18] Fujimaki S, Suzui N, Ishioka N S , et al. Tracing cadmium from culture to spikelet:noninvasive imaging and quantitative characterization of absorption,transport,and accumulation of cadmium in an intact rice plant. Plant Physiology, 2010,152(4):1796-1806.
[19] Clemens S . Plant science:the key to preventing slow cadmium poisoning. Trends in Plant Science, 2013,18(2):92-99.
[20] 朱智伟, 陈铭学, 牟仁祥 , 等. 水稻镉代谢与控制研究进展. 中国农业科学, 2014,47(18):3633-3640.
[21] Rodda M S, Li G, Reid R J . The timing of grain Cd accumulation in rice plants:the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant and Soil, 2011,347(1/2):105-114.
[22] Mariyo K, Satoru I, Kazumi I , et al. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Science and Plant Nutrition, 2010,56(6):839-847.
[23] Ishimaru Y, Suzuki M, Tsukamoto T , et al. Rice plants take up iron as an Fe 3+-phytosiderophore and as Fe 2+ . Plant Journal, 2006,45(3):335-346.
[24] Nakanishi H, Ogawa I, Ishimaru Y , et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 2006,52(4):464-469.
[25] Lee S, An G . Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell and Environment, 2010,32(4):408-416.
[26] Sasaki A, Yamaji N, Yokosho K , et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell, 2012,24(5):2155-2167.
[27] Ueno D, Yamaji N, Kono I , et al. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(38):16500-16505.
[28] Miyadate H, Adachi S, Hiraizumi A , et al. OsHMA3,a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 2011,189(1):190-199.
[29] Ueno D, Koyama E, Yamaji N , et al. Physiological,genetic,and molecular characterization of a high-Cd-accumulating rice cultivar,Jarjan. Journal of Experimental Botany, 2010,62(7):2265-2272.
[30] Takahashi R, Ishimaru Y, Nakanishi H , et al. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signaling and Behavior, 2011,6(11):1813-1816.
[31] Sasaki A, Yamaji N, Ma J F . Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany, 2014,65(20):6013-6021.
[32] Ishimaru Y, Takahashi R, Bashir K , et al. Characterizing the role of rice NRAMP5 in manganese,iron and cadmium transport. Scientific Reports, 2012,2:286.
[33] Ryuichi T, Yasuhiro I, Hugo S , et al. From laboratory to field:OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS ONE, 2014,9(6):e98816.
[34] Yang M, Zhang Y Y, Zhang L J , et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. Journal of Experimental Botany, 2014,65(17):4849.
[35] Yang C, Zhang Y, Huang C . Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. Journal of Integrative Agriculture, 2018,18(3):688-697.
[36] Ishikawa S, Abe T, Kuramata M , et al. A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. Journal of Experimental Botany, 2010,61(3):923-934.
[37] Tiwari M, Sharma D, Dwivedi S , et al. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP,OsNRAMP1,in arsenic transport and tolerance. Plant, Cell and Environment, 2014,37(1):140-152.
[38] Takahashi R, Ishimaru Y, Senoura T , et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011,62(14):4843-4850.
[39] Satoh-Nagasawa N, Mori M, Nakazawa N , et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant and Cell Physiology, 2012,53(1):213-224.
[40] Takahashi R, Ishimaru Y, Shimo H , et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell and Environment, 2012,35:1948-1957.
[41] Yamaji N, Xia J, Mitani-Ueno N , et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology, 2013,162(2):927-939.
[42] Uraguchi S, Kamiya T, Sakamoto T , et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(52):20959-20964.
[43] Lee S, Kim Y Y, Lee Y , et al. Rice P1B-type heavy-metal ATPase,OsHMA9,is a metal efflux protein. Plant Physiololgy, 2007,145(3):831-842.
[44] Kuramata M, Masuya S, Takahashi Y , et al. Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant and Cell Physiology, 2009,50(1):106-117.
[45] Oda K, Otani M, Uraguchi S , et al. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Journal of the Agricultural Chemical Society of Japan, 2011,75(6):1211-1213.
[46] Shimo H, Ishimaru Y, An G , et al. Low cadmium (LCD),a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany, 2011,62(15):5727-5734.
[47] Wang F, Wang M, Liu Z , et al. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress. Plant Physiology and Biochemistry, 2015,96:261-269.
[48] Wang C, Guo W, Cai X , et al. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes. New Biotechnology, 2018,48:29-34.
[49] 殷小林, 孙志忠, 袁定阳 , 等. 水稻体内镉离子代谢机制研究进展. 分子植物育种, 2018,16(3):972-978.
[50] Yuan L, Yang S, Liu B , et al. Molecular characterization of a ricemetal tolerance protein,OsMTP1. Plant Cell Reports, 2012,31(1):67-79.
[51] Lan H X, Wang Z F, Wang Q H , et al. Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.). Molecular Biology Reports, 2013,40(2):1201-1210.
[52] Menguer P K, Farthing E, Peaston K A , et al. Functional analysis of the rice vacuolar zinc transporter OsMTP1. Journal of Experimental Botany, 2013,64(10):2871-2883.
[53] Das N, Bhattacharya S, Maiti M K . Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiology and Biochemistry, 2016,105:297-309.
[54] Ding Y, Chen Z, Zhu C . Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). Journal of Experimental Botany, 2011,62(10):3563-3573.
[55] Ding Y F, Ye Y Y, Jiang Z H , et al. MicroRNA390 is involved in cadmium tolerance and accumulation in rice. Frontiers in Plant Science, 2016,7:235.
[56] Ding Y F, Guo S H, Wang Y , et al. MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiology, 2018,177:1691-1703.
[57] 罗惠莉, 王宇霖, 周思 , 等. 生物炭基调理剂对水稻镉吸收的影响. 环境工程学报,2018(4):1190-1197.
[58] Yin Y, Qun Z Y, Hua L C , et al. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils. PLoS ONE, 2015,10(4):e0124022.
[59] Hu P, Ouyang Y, Wu L , et al. Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Journal of Environmental Sciences, 2015,27:225-231.
[60] Yu L L, Zhu J Y, Huang Q Q , et al. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety. Ecotoxicology and Environmental Safety, 2014,108:287-293.
[61] 彭鸥, 刘玉玲, 铁柏清 , 等. 施硅对镉胁迫下水稻镉吸收和转运的调控效应. 生态学杂志, 2019,38(4):1049-1056.
[62] 何冰, 陈小勤, 辛子兵 , 等. 不同生长调节物质对水稻生长及镉积累的影响. 生态学报, 2016,36(21):6863-6871.
[63] He S Y, He Z L, Yang X E , et al. Soil biogeochemistry,plant physiology,and phytoremediation of cadmium-contaminated soils. Advances in Agronomy, 2015,134:135-225.
[64] Dixit R, Wasiullah, Malaviya, D ,et al. Bioremediation of heavy metals from soil and aquatic environment:an overview of principles and criteria of fundamental processes. Sustainability, 2015,7(2):2189-2212.
[65] Ishikawa S, Ishimaru Y, Igura M , et al. Ion-beam irradiation,gene identification,and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences, 2012,109(47):19166-19171.
[66] Luo J S, Huang J, Zeng D L , et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 2018,9(1):645.
[67] 黄新元, 赵方杰 . 植物分子遗传学在挖掘作物重金属积累相关基因中的作用. 农业环境科学学报, 2018,37(7):1396-1401.
[68] Liu J G, Zhu Q S, Zhang Z J , et al. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. Journal of the Science of Food and Agriculture, 2010,85(1):147-153.
[1] 朱安,高捷,黄健,汪浩,陈云,刘立军. 水稻根系形态生理及其与稻米品质关系的研究进展[J]. 作物杂志, 2020, (2): 1–8
[2] 轧宗杰,卢树昌,侯琨. 水稻旱直播栽培发展现状、问题及应用前景[J]. 作物杂志, 2020, (2): 9–15
[3] 田孟祥,宫彦龙,张时龙,何友勋,雷月,余本勋,余莉,李佳丽,张大双,叶永印. 水稻苗期耐低温基因COLD1新功能标记的设计与验证[J]. 作物杂志, 2020, (1): 55–60
[4] 陈庭木,孙志广,邢运高,方兆伟,王宝祥,刘艳,徐大勇. 水稻可消化蛋白质含量测定方法研究及资源筛选[J]. 作物杂志, 2020, (1): 61–66
[5] 荆培培,任红茹,杨洪建,戴其根. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响[J]. 作物杂志, 2020, (1): 67–75
[6] 赵海新. 碱胁迫对水稻叶绿素及叶片脯氨酸和可溶性糖含量的影响[J]. 作物杂志, 2020, (1): 98–102
[7] 吕军,姜秀英,解文孝,刘军,蒋洪波,沈枫,韩勇. 辽宁省不同熟期水稻品质性状分析[J]. 作物杂志, 2020, (1): 17–21
[8] 李波,宫亮,曲航,金丹丹,孙文涛. 辽河三角洲稻区施氮水平对水稻生长发育及产量的影响[J]. 作物杂志, 2020, (1): 173–178
[9] 王鹤璎,郭晓红,张钦明,马艳,李猛,姜红芳,胡月,兰宇辰,徐令旗,郭洪涛,吕艳东. 水条播对寒地水稻农艺性状和产量构成因素的影响[J]. 作物杂志, 2020, (1): 81–88
[10] 石吕,薛亚光,魏亚凤,李波,石晓旭,刘建. 不同氮素粒肥水平下精米蒸煮食味品质变化及其与矿质元素含量相关性分析[J]. 作物杂志, 2019, (6): 57–65
[11] 李虎,陈传华,刘广林,吴子帅,黄秋要,罗群昌. 种植密度和施氮量对桂育9号农艺性状及产量的影响[J]. 作物杂志, 2019, (6): 99–103
[12] 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 15–21
[13] 李冠男,黄立华,张璐,陈嘉兴,杨靖民. 施用有机肥和秸秆还田对东北苏打盐碱地水稻营养与食味品质的影响[J]. 作物杂志, 2019, (5): 82–88
[14] 马凡凡,邢素林,甘曼琴,刘佩诗,黄瑜,甘晓玉,马友华. 有机肥替代化肥对水稻产量、土壤肥力及农田氮磷流失的影响[J]. 作物杂志, 2019, (5): 89–96
[15] 谷娇娇,胡博文,贾琰,沙汉景,李经纬,马超,赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019, (4): 176–182
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 马瑞琦,亓振,常旭虹,王德梅,陶志强,杨玉双,冯金凤,孙敏,赵广才. 化控剂对冬小麦植株性状及产量品质的调节效应[J]. 作物杂志, 2018, (1): 133 –140 .
[5] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[6] 李红燕,王永宏,赵如浪,张文杰,明博,谢瑞芝,王克如,李璐璐,高尚,李少昆. 宁夏引/扬黄灌区玉米子粒脱水模型的构建与应用[J]. 作物杂志, 2018, (4): 149 –153 .
[7] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[8] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[9] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[10] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .