作物杂志,2020, 第3期: 197200 doi: 10.16035/j.issn.1001-7283.2020.03.030
• 植物保护 • 上一篇
Meng Feng, Zhang Yaling, Jin Xuehui()
摘要:
为了检测黑龙江省稻瘟病菌无毒基因ACE1、AVR-Pi9、AVR-Pia、AVR-Pii和AVR1-CO39的存在情况,采用5对无毒基因引物,对2017年黑龙江省208个稻瘟病菌单孢菌株DNA进行PCR扩增检测。结果表明,ACE1出现频率最高(87.98%);AVR1-CO39出现频率最低(0);无毒基因AVR-Pi9的出现频率为79.81%;AVR-Pia的出现频率为16.35%;AVR-Pii的出现频率为0.48%。黑龙江省稻瘟病菌无毒基因群体组成结构错综复杂,且具有明显的地域特点。
[1] |
Couch B C, KohnL M . A multilocus gene genealogy concordant with host preference indicates segregation of a new species,Magnaporthe oryzae,from M. grisea. Mycologia, 2002,94(4):683-693.
doi: 10.1080/15572536.2003.11833196 |
[2] | Ou S H . Rice Diseases. Kew:Commonwealth Mycological Institute, 1985. |
[3] | 孙强, 张三元, 张俊国 , 等. 东北水稻生产现状及对策. 北方水稻, 2010,40(2):72-74. |
[4] |
Flor H H . Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971,9(1):275-296.
doi: 10.1146/annurev.py.09.090171.001423 |
[5] |
Marcel S, Sawers R, Oakeley E , et al. Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. The Plant Cell, 2010,22(9):3177-3187.
doi: 10.1105/tpc.110.078048 |
[6] |
Liu W D, Zhou X Y, Li G T , et al. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathogens, 2011,7(1):e1001261.
doi: 10.1371/journal.ppat.1001261 |
[7] |
Ma J H, Wang L, Feng S J , et al. Identification and fine mapping of AvrPi15,a novel avirulence gene of Magnaporthe grisea. Theoretical and Applied Genetics, 2006,113(5):875-883.
doi: 10.1007/s00122-006-0347-6 |
[8] | Sweigard J A, Carroll A M, Kang S , et al. Identification,cloning,and characterization of PWL2,a gene for host species specificity in the rice blast fungus. The Plant Cell, 1995,7(8):1221-1233. |
[9] |
Kang S, Sweigard J A, Valent B . The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 1995,8(6):939-948.
doi: 10.1094/MPMI-8-0939 |
[10] |
Orbach M J, Farrall L, Sweigard J A , et al. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. The Plant Cell, 2000,12(11):2019-2032.
doi: 10.1105/tpc.12.11.2019 |
[11] |
Collemare J, Pianfetti M, Houlle A E , et al. Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytologist, 2010,179(1):196-208.
doi: 10.1111/nph.2008.179.issue-1 |
[12] | Farman M L, Leong S A . Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: Discrepancy between the physical and genetic maps. Genetics, 1998,150(3):1049-1058. |
[13] |
Li W, Wang B H, Wu J , et al. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-Microbe Interactions, 2009,22(4):411-420.
doi: 10.1094/MPMI-22-4-0411 |
[14] |
Yoshida K, Saitoh H, Fujisawa S , et al. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. The Plant Cell, 2009,21(5):1573-1591.
doi: 10.1105/tpc.109.066324 |
[15] |
Wu J, Kou Y J, Bao J D , et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AVR-Pi9 that triggers Pi9-mediated blast resistance in rice. New Phytologist, 2015,206(4):1463-1475.
doi: 10.1111/nph.13310 |
[16] |
Schneider D R, Saraiva A M, Azzoni A R , et al. Overexpression and purification of PWL2D,a mutant of the effector protein PWL2 from Magnaporthe grisea. Protein Expression and Purification, 2010,74(1):24-31.
doi: 10.1016/j.pep.2010.04.020 |
[17] |
Zhang S L, Wang L, Wu W H , et al. Function and evolution of Magnaporthe oryzae avirulence gene AVR-Pib responding to the rice blast resistance gene Pib. Scientific Reports, 2015,5:11642.
doi: 10.1038/srep11642 |
[18] | 张崎峰 . 用SSR与SCAR标记对黑龙江省稻瘟病菌AVR-pit等无毒基因的检测. 大庆:黑龙江八一农垦大学, 2009. |
[19] | 李祥晓 . 黑龙江省稻瘟病菌无毒基因分析及抗稻瘟病种质资源筛选. 北京:中国农业科学院, 2012. |
[20] | 张科, 刘丽, 韩俊楠 , 等. 黑龙江省稻瘟病菌无毒基因的组成及其频率初析. 种子世界, 2016(12):19-21. |
[21] |
王世维, 郑文静, 赵家铭 , 等. 辽宁省稻瘟病菌无毒基因型鉴定及分析. 中国农业科学, 2014,47(3):462-472.
doi: 10.3864/j.issn.0578-1752.2014.03.006 |
[1] | 邱彩玲, 范国权, 申宇, 高艳玲, 张威, 韩树鑫, 张抒, 董学志, 马纪, 白艳菊. 马铃薯纺锤块茎类病毒RT-qPCR检测技术体系的建立[J]. 作物杂志, 2020, (3): 7984 |
[2] | 张晓玉,张亚玲,靳学慧,闫天雨,赵泽. 稻瘟病菌杂交后代致病性遗传分析[J]. 作物杂志, 2020, (2): 182187 |
[3] | 祝菊澧,梁静思,张佩,王伟伟,林桐司骐,谢欣娱,苏瑞,唐唯. 基于qPCR和LAMP技术的马铃薯晚疫病菌快速检测方法[J]. 作物杂志, 2019, (6): 168176 |
[4] | 张晓艳,孙宇峰,曹焜,姜颖,韩承伟,赵越,韩喜财,王晓楠. 黑龙江省工业大麻育种现状及展望[J]. 作物杂志, 2019, (3): 1519 |
[5] | 周弋力,张亚玲,赵宏森,靳学慧. 黑龙江省主栽水稻品种抗稻瘟病基因的分子检测与分析[J]. 作物杂志, 2019, (3): 172177 |
[6] | 李丽娜,金龙国,谢传晓,刘昌林. 转基因玉米和转基因大豆盲样检测方法[J]. 作物杂志, 2017, (6): 3744 |
[7] | 赵欣欣,宋丽荣,权薇竹,曲兴然,王奇. 高温高湿老化处理对不同豆类种子活力及生长能力的影响[J]. 作物杂志, 2017, (5): 168172 |
[8] | 卢艳丽,周洪友,张笑宇. 马铃薯茎尖脱毒方法优化及病毒检测[J]. 作物杂志, 2017, (1): 161167 |
[9] | 郭翠,张维,余桂容,周正富,李亮,冯帅,陈明,王劲. 转G2-EPSPS基因玉米D-3侧翼序列分析与转化体特异性检测方法[J]. 作物杂志, 2016, (1): 6975 |
[10] | 谢传晓, 李新海, 张世煌. 农产品未准人转基因成分“低水平混杂”的概念、成因及对策[J]. 作物杂志, 2015, (3): 14 |
[11] | 马军韬, 张国民, 辛爱华, 等. 以稻瘟病抗性基因分析为基础的水稻品种抗性布局研究[J]. 作物杂志, 2015, (1): 151155 |
[12] | 李兴欣, 孟义江, 罗婉娇, 等. 基于绿色荧光标记的甘草遗传转化体系的建立[J]. 作物杂志, 2014, (4): 5258 |
[13] | 蒋运斌, 马逾英, 杨枝中, 等. 川白芷种子水溶性内源性萌发抑制物质的初步研究[J]. 作物杂志, 2014, (3): 95100 |
[14] | 刘文林, 张宏纪, 张举梅, 等. 中国黑龙江省春小麦品种与俄罗斯春小麦品种(系)光周期基因类型的比较分析[J]. 作物杂志, 2014, (3): 2831 |
[15] | 刘海燕. 黑龙江省玉米持续增产的主要限制因素与对策[J]. 作物杂志, 2014, (2): 913 |
|