作物杂志,2020, 第4期: 45–52 doi: 10.16035/j.issn.1001-7283.2020.04.007

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

不同水分条件下小麦持绿表型性状评价及其与产量相关性研究

杨斌1,2(), 闫雪1(), 温宏伟2,3, 王曙光1, 逯腊虎2, 范华1, 景蕊莲4, 孙黛珍1()   

  1. 1山西农业大学农学院,030801,山西太谷
    2山西农业大学小麦研究所,041000,山西临汾
    3有机旱作山西省重点实验室,030000,山西太原
    4中国农业科学院作物科学研究所,100081,北京
  • 收稿日期:2019-11-20 修回日期:2019-12-03 出版日期:2020-08-15 发布日期:2020-08-11
  • 通讯作者: 孙黛珍
  • 作者简介:杨斌,主要从事小麦抗旱分子育种研究,E-mail: sxxmsyb83@126.com;|闫雪为共同第一作者,主要从事小麦分子育种研究,E-mail: yanxue092@163.com
  • 基金资助:
    山西省农业科学院博士基金(YBSJJ1811);有机旱作山西省重点实验室开放基金(201805D111015-6);山西省面上青年基金(201801D221314);山西省重点研发计划(201803D221018-1);山西省重点研发计划(201703D211007-9)

Study on the Evaluation of Stay-Green Traits of Wheat and Its Correlation with Yield-Related Traits under Different Water Conditions

Yang Bin1,2(), Yan Xue1(), Wen Hongwei2,3, Wang Shuguang1, Lu Lahu2, Fan Hua1, Jing Ruilian4, Sun Daizhen1()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Institute of Wheat, Shanxi Agricultural University, Linfen 041000, Shanxi, China
    3Shanxi Province Key Laboratory of Organic Dry Farming, Taiyuan 030000, Shanxi, China
    4Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-11-20 Revised:2019-12-03 Online:2020-08-15 Published:2020-08-11
  • Contact: Sun Daizhen

摘要:

找出适宜在多个环境条件下评价小麦持绿性状的表型指标,为快速筛选小麦持绿品系,加速抗旱、高光效育种进程提供数据支撑。以包含306个家系的RIL群体(旱选10号×鲁麦14)为材料,分析了不同水分条件下灌浆不同时期旗叶叶绿素SPAD值、功能绿叶面积持续期(GLAD)以及衰老参数变化特征,并对其与产量性状的相关性进行了研究。结果表明:RIL群体SPAD值、GLAD在整个灌浆期的变化动态复杂,衰老相关参数无法反映其动态变化过程。2种水分条件下,在灌浆后期(花后20、25和30d)SPAD值与粒宽、粒厚、千粒重以及单株产量呈显著或极显著正相关。在灌溉条件下花后10、13、16、19和22d的GLAD与单株产量呈极显著正相关;而在干旱胁迫条件下GLAD与单株产量相关性则未达到显著水平。不同环境条件下,旗叶SPAD值在灌浆后期(花后20、25和30d)相比于GLAD和衰老特征参数与产量性状具有更好的相关性,且测定相对简单,更适宜于持绿品系的快速筛选。

关键词: 小麦, 持绿性状, 产量, 相关性分析

Abstract:

To provide support for rapidly selecting stay-green lines and for accelerating drought-resistant and high photosynthetic efficiency breeding processes, phenotypic indicators suitable for evaluating stay-green traits should be found out under multiple environmental conditions. In this study, the SPAD value, green leaf area duration (GLAD) and the change of senescence parameters under different water conditions of flag leaves in different periods of grain-filling were analyzed using recombinant inbred lines (RIL) population of 306 lines (Hanxuan 10×Lumai 14), and the correlations between them and yield-related traits were studied. The results showed that the changes of SPAD value and GLAD in RIL population were dynamic and complex processes during the whole grain-filling period, while the senescence-related parameters could not reflect the dynamic process. Under the two water conditions, SPAD value at the late filling-grain stage (20, 25 and 30 days after anthesis) was significant or highly significant correlation with grain width, grain thickness, 1000-grain weight and yield per plant. Under irrigation conditions, the GLAD 10, 13, 16, 19 and 22 days after anthesis was highly significantly correlated with the yield per plant. However, the GLAD was not significantly correlated with yield per plant under drought stress. Under different environmental conditions, compared with GLAD, the SPAD value of flag leaf has a better correlation with senescence parameters and yield-related traits in the late grain-filling stage, and the measurement of the SPAD value is relatively simple, which is more suitable for selecting stay-green lines.

Key words: Wheat, Stay-green trait, Yield, Correlation analysis

表1

2种水分条件下灌浆不同时期SPAD值、GLAD与衰老相关参数的分布特征

性状
Trait
亲本Parent t
t value
RIL群体RIL population
旱选10号
Hanxuan 10
鲁麦14
Lumai 14
平均值
Mean
标准差
Standard
deviation
偏度
Skewness
峰度
Kurtosis
最小值
Minimum
最大值
Maximum
变异系数
Coefficient of
variation (%)
SPAD-S1 56.97/56.37 61.51/59.67 4.39*/5.99* 57.26/56.39 2.44/2.33 -0.12/-0.05 -0.08/-0.26 49.42/50.16 64.34/62.66 4.27/4.13
SPAD-S2 55.38/54.18 59.93/56.87 5.75*/3.23ns 56.24/55.44 2.53/2.56 0.02/-0.22 -0.12/0.16 48.82/45.97 64.12/61.16 4.42/4.62
SPAD-S3 53.88/51.97 59.34/52.06 9.09*/0.12ns 55.10/52.71 3.22/3.27 -0.78/-0.52 2.11/0.68 35.90/39.58 61.84/59.92 5.85/6.21
SPAD-S4 52.74/49.34 55.79/42.46 5.73*/20.05** 50.97/46.88 6.44/8.44 -1.19/-1.61 2.71/2.97 1.48/3.58 60.55/57.92 12.64/18.01
SPAD-S5 42.98/25.95 41.43/10.12 0.35ns/7.56* 34.61/18.94 9.30/12.30 -0.65/0.35 -0.03/-0.65 0.00/0.00 55.82/49.32 35.53/64.95
SPAD-S6 15.97/3.25 12.34/1.74 1.72ns/8.13* 12.96/3.97 2.12/2.87 0.85/0.70 1.81/1.20 0.00/0.00 42.55/20.38 43.58/76.82
SPAD-S7 3.71/0.00 2.11/0.00 4.82*/- 2.04/- 0.12/- 1.20/- 1.75/- 0.00/0.00 6.22/0.00 95.95/-
GLAD-D1 8.15/8.13 8.73/7.75 5.00*/3.99ns 8.53/8.32 0.34/0.43 -0.79/-0.93 0.88/1.40 7.00/6.67 9.00/9.00 3.98/5.17
GLAD-D2 8.00/7.92 8.60/6.58 5.20*/6.70* 8.30/8.03 0.49/0.59 -1.10/-1.83 1.13/1.90 4.25/4.10 9.00/9.00 5.87/7.33
GLAD-D3 7.93/6.65 7.93/5.14 1.43ns/5.60* 7.86/7.12 0.84/1.35 -0.65/-0.81 0.55/0.59 2.37/2.40 9.00/8.67 10.68/18.88
GLAD-D4 7.40/5.00 6.53/2.40 6.21*/9.37* 6.93/5.29 1.29/1.89 -1.63/-0.93 1.72/1.37 1.05/0.22 8.80/8.00 18.67/35.75
GLAD-D5 4.50/0.62 3.53/0.00 3.35ns/- 3.93/1.55 1.03/1.60 -0.15/1.19 -0.84/1.12 0.00/0.00 8.00/7.40 51.57/43.09
GLAD-D6 1.32/0.00 0.40/0.00 6.72*/- 1.02/0.22 1.35/0.64 1.73/1.80 2.85/1.88 0.00/0.00 6.25/4.20 62.52/85.77
GLAD-D7 0.30/0.00 0.00/0.00 -/- 0.10/0.03 0.35/0.19 4.34/1.47 2.01/1.62 0.00/0.00 2.75/2.40 77.30/87.16
MRS (%/d) 15.13/13.97 13.21/15.86 5.39*/9.97** 16.15/16.34 4.60/5.22 -0.26/-0.30 -0.40/-0.35 6.30/5.57 37.10/33.63 28.70/31.94
TMRS (d) 22.86/20.12 22.20/18.86 0.53ns/5.32* 22.69/20.65 1.67/1.67 -0.25/-0.63 1.10/2.94 16.14/13.26 26.73/25.85 7.37/8.10
PGMS (%) 29.80/29.61 32.91/30.19 5.15*/0.93ns 31.33/31.08 1.63/2.30 2.41/1.64 1.95/0.87 26.87/25.50 45.52/42.53 5.21/7.41
75%G 20.88/17.75 19.45/16.20 1.63ns/2.45ns 20.04/17.96 1.81/2.08 -1.13/-1.68 0.89/0.92 8.85/5.80 24.67/23.21 9.04/11.60
50%G 22.28/19.52 21.91/17.84 0.84ns/5.17* 21.91/19.85 1.66/1.72 -0.43/-1.04 0.91/1.07 15.19/11.06 26.70/25.07 7.56/8.68
25%G 23.60/20.92 23.48/19.14 0.33ns/4.76* 23.39/21.35 1.73/1.69 -0.13/-0.24 0.68/1.26 16.92/14.68 28.46/27.05 7.38/7.90
Ts (d) 18.15/14.95 12.71/12.97 4.96*/6.25* 16.37/14.23 2.65/3.31 -2.10/-1.98 1.08/1.78 8.26/2.03 22.11/19.86 16.23/19.86
To (d) 29.60/24.47 25.22/20.91 4.80*/9.65* 25.03/23.02 1.98/1.92 0.05/0.53 0.19/2.43 18.75/16.17 30.80/29.38 7.92/9.35

表2

2种水分条件下产量性状的分布特征

性状
Trait
亲本Parent t
t value
RIL群体RIL population
旱选10号
Hanxuan 10
鲁麦14
Lumai 14
平均值
Mean
标准差
Standard
deviation
偏度
Skewness
峰度
Kurtosis
最小值
Minimum
最大值Maximum 变异系数Coefficient of
variation (%)
千粒重
1000-grain weight (g)
38.54/37.52 39.12/34.02 2.83ns/5.39* 39.33/37.36 4.51/4.13 -0.49/0.17 1.31/0.03 26.28/25.22 48.80/50.40 11.47/11.57
单株产量
Yield per plant (g)
5.20/3.99 4.93/1.92 3.59ns/6.45* 4.31/2.94 1.58/0.97 0.49/0.54 0.01/0.02 1.24/0.72 9.11/5.59 36.78/33.13
单株穗数
Spike number per plant
4.16/3.13 3.24/1.94 2.60ns/4.78* 3.36/2.63 0.96/0.77 0.60/1.23 0.91/0.46 1.50/1.35 7.25/6.98 40.62/47.23
穗粒数
Grain number per spike
43.40/41.24 33.02/32.99 5.75*/5.10* 40.33/36.35 6.22/6.08 0.17/-0.06 0.32/0.29 24.39/16.67 56.60/51.47 15.43/16.71
粒长Grain length (mm) 6.55/6.29 6.68/6.26 0.52ns/1.88ns 6.74/6.59 0.32/0.32 0.00/-0.03 0.00/0.13 5.89/5.59 7.73/7.70 4.76/4.89
粒宽Grain width (mm) 3.48/3.35 3.07/3.03 7.35*/6.36* 3.30/3.19 0.18/0.18 0.50/-0.54 0.97/2.22 2.76/2.24 4.01/3.74 5.53/5.61
粒厚
Grain thickness (mm)
3.14/2.95 3.03/2.91 4.35*/4.84* 3.11/2.99 0.19/0.20 0.34/0.03 0.00/0.00 2.65/2.48 3.69/3.57 5.99/6.58

表3

2种水分条件下SPAD值与产量性状的相关性

性状Trait SPAD-S1 SPAD-S2 SPAD-S3 SPAD-S4 SPAD-S5 SPAD-S6 SPAD-S7
粒长Grain length -0.06/0.01 -0.07/0.03 -0.01/0.04 -0.07/0.07 0.09/0.04 -0.02/-0.02 -0.06/0.04
粒宽Grain width -0.04/0.09 -0.03/0.07 -0.03/0.07 -0.09/0.05 0.21**/0.20** -0.26**/0.13* -0.13*/0.22**
粒厚Grain thickness -0.02/0.04 -0.05/0.02 -0.03/0.02 -0.04/-0.05 0.06/0.19** -0.24**/0.18** -0.10/0.21**
千粒重
1000-grain weight
-0.04/-0.07 -0.03/-0.05 -0.05/0.09 -0.12*/0.07 0.15**/0.22** -0.12*/0.18** -0.17**/0.19**
单株产量
Yield per plant
-0.05/0.11 -0.08/0.15* -0.17**/0.15* -0.27**/0.15** 0.27**/0.17** -0.23**/0.13* -0.20**/0.15**
单株穗数
Spike number per plant
-0.04/0.11 -0.06/0.12* -0.13*/0.12* -0.19**/0.08 0.18**/0.01 -0.07/-0.10 -0.02/-0.06
穗粒数
Grain number per spike
-0.14*/0.19** -0.16**/0.23** -0.22**/0.20** -0.27**/0.21** 0.26**/0.17** -0.04/0.10 -0.03/0.07

表4

2种水分条件下GLAD与产量性状的相关性

性状Trait GLAD-D1 GLAD-D2 GLAD-D3 GLAD-D4 GLAD-D5 GLAD-D6 GLAD-D7
粒长Grain length -0.16**/0.17** 0.14*/0.12* 0.12*/0.07 0.11*/0.03 0.05/0.03 -0.01/0.03 -0.09/0.02
粒宽Grain width -0.03/0.05 0.05/-0.01 0.05/0.03 0.12*/0.13* 0.30**/0.18** -0.29**/0.14* -0.16**/0.04
粒厚Grain thickness -0.05/0.07 0.01/-0.01 0.03/0.06 0.05/0.04 0.12*/0.15* -0.23**/0.19** -0.16**/0.08
千粒重
1000-grain weight
-0.07/0.21** 0.07/0.16** 0.16**/0.15** 0.17**/0.13* 0.20**/0.14* -0.11/0.08 -0.05/0.05
单株产量
Yield per plant
-0.15**/0.11 0.16**/0.09 0.22**/0.04 0.20**/0.06 0.19**/0.07 -0.09/0.07 -0.04/0.10
单株穗数
Spike number per plant
-0.11*/0.04 0.10/0.02 0.15*/-0.02 0.12*/-0.02 0.09/-0.06 -0.08/-0.12* -0.08/-0.14*
穗粒数
Grain number per spike
-0.18**/0.08 0.23**/0.10 0.23**/0.04 0.19**/0.07 0.16**/0.10 -0.02/0.14* -0.06/0.02

表5

2种水分条件下衰老相关参数与产量性状的相关系数

性状Trait MRS TMRS PGMS Ts To 75%G 25%G 50%G
粒长Grain length -0.09/-0.09 0.05/0.02 -0.05/0.08 -0.11/0.06 -0.00/-0.06 0.09/0.03 0.03/-0.03 0.06/0.00
粒宽Grain width -0.12*/0.12* 0.28**/0.15** -0.08/0.06 -0.03/-0.03 -0.30**/0.20** 0.17**/0.05 0.29**/0.17** 0.25**/0.12*
粒厚Grain thickness -0.08/0.10 0.14*/0.08 -0.13*/0.13* -0.06/-0.10 -0.19**/0.16** 0.04/-0.03 0.16**/0.11 0.11/0.04
千粒重
1000-grain weight
-0.04/-0.07 0.19**/0.11 -0.04/0.18** -0.16**/0.01 -0.15*/0.13* 0.20**/0.06 0.18**/0.12* 0.20**/0.10
单株产量
Yield per plant
-0.21**/-0.20** 0.15**/-0.04 -0.07/-0.02 -0.29**/0.13* -0.03/-0.13* 0.26**/0.07 0.11/-0.07 0.19**/0.00
单株穗数
Spike number per plant
-0.19**/-0.09 0.06/-0.07 -0.08/0.01 -0.21**/0.05 -0.04/-0.11 0.16**/0.07 0.02/-0.09 0.09/-0.05
穗粒数
Grain number per spike
-0.16**/-0.15* 0.12*/-0.01 -0.02/-0.08 -0.21**/0.13* -0.03/-0.10 0.19**/0.08 0.09/-0.04 0.14*/0.02
[1] 贾丽 . 持绿小麦的筛选及同化物的积累与转运. 杨凌:西北农林科技大学, 2008.
[2] Yang D L, Jing R L, Chang X P , et al. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). Journal of Integrative Plant Biology, 2007,49(5):646-654.
[3] 陈晓平, 杨德龙, 栗孟飞 , 等. 干旱胁迫条件下小麦RILs群体花后旗叶持绿性遗传特性及其与粒重的相关性. 干旱地区农业研究, 2014,32(6):57-63.
[4] 解芳, 翟国伟, 邹桂花 , 等. 干旱胁迫对高粱苗期抗旱生理特性的影响. 浙江农业学报, 2012,24(5):753-757.
[5] 黄瑞冬, 孙璐, 肖木辑 , 等. 持绿型高粱B35灌浆期对干旱的生理生化响应. 作物学报, 2009,35(3):560-565.
[6] You S C, Cho S H, Zhang H , et al. Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Molecules and Cells, 2007,24(1):83-94.
[7] Zhang K, Zhang Y, Chen G , et al. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Research Communications, 2009,37(4):499-511.
[8] Vijayalakshmi K, Fritz A K, Paulsen G M , et al. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding, 2010,26(2):163-175.
[9] 石慧清 . 持绿型小麦对花后高温的耐性研究. 杨凌:西北农林科技大学, 2011.
[10] 王鑫 . 小麦滞绿突变体tasg1的抗盐生理机制研究. 泰安:山东农业大学, 2014.
[11] Joshi A K, Kumari M, Singh V P , et al. Stay green trait: variation,inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica, 2007,153(1):59-71.
[12] 王建国, 杜桂娟 . 玉米持绿性评价方法的探讨. 辽宁农业科学, 2003(5):1-4.
[13] 刘志红 . 玉米持绿性评价及遗传分析. 雅安:四川农业大学, 2012.
[14] Wang S, Liang Z, Sun D , et al. Quantitative trait loci mapping for traits related to the progression of wheat flag leaf senescence. The Journal of Agricultural Science, 2015,153(7):1234-1245.
[15] 梁增浩 . 不同水分条件下小麦持绿相关性状的QTL定位. 晋中:山西农业大学, 2013.
[16] 钱雪娅 . 不同水分条件下小麦重要农艺性状的遗传分析及QTL定位. 杨凌:西北农林科技大学, 2009.
[17] Blacklow W M, Incoll L D . Nitrogen stress of winter wheat changed the determinants of yield and the distribution of nitrogen and total dry matter during grain filling. Functional Plant Biology, 1981,8(2):191-200.
[18] Saleh M S, Al-Doss A A, Elshafei A A, , et al. Identification of new TRAP markers linked to chlorophyll content,leaf senescence,and cell membrane stability in water-stressed wheat. Biologia Plantarum, 2014,58(1):64-70.
[19] Bogard M, Jourdan M, Allard V , et al. Anthesis date mainly explained correlations between post-anthesis leaf senescence,grain yield,and grain protein concentration in a winter wheat population segregating for flowering time QTLs. Journal of Experimental Botany, 2011,62(10):3621-3636.
[20] Guo P, Baum M, Varshney R K , et al. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 2008,163(2):203-214.
[21] Thomas H, Howarth C J . Five ways to stay green. Journal of Experimental Botany, 2000,51(SI):329-337.
[22] 武永胜, 薛晖, 刘洋 , 等. 持绿型小麦叶片衰老和叶绿素荧光特征的研究. 干旱地区农业研究, 2010,28(4):117-122,127.
[23] Gong Y H, Zhang J, Gao J Y , et al. Slow export of photoassimilate from stay-green leaves during late grain-filling stage in hybrid winter wheat (Triticum aestivum L.). Journal of Agronomy and Crop Science, 2005,191(4):292-299.
[24] Spano G, Perrotta C, Platani C , et al. Physiological characterization of 'stay green' mutants in durum wheat. Journal of Experimental Botany, 2003,54(386):1415-1420.
[25] Reynolds M P, Rajaram S, Sayre K D . Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Science, 1999,39(6):1611-1621.
[26] Gorny A G, Garczynski S . Genotypic and nutrition-dependent variation in water use efficiency and photosynthetic activity of leaves in winter wheat (Triticum aestivum L.). Journal of Applied Genetics, 2002,43(2):145-160.
[1] 张晓艳, 王晓楠, 曹焜, 孙宇峰. 5个工业大麻品种(系)纤维产量及产量构成因素的相关性分析[J]. 作物杂志, 2020, (4): 121–126
[2] 秦鸿德, 荣义华, 黄晓莉, 胡爱兵, 周家华, 闫显会, 李蔚, 张贤红, 李洪菊, 杨国正. 简化施肥夏直播棉对密度和氮肥的响应[J]. 作物杂志, 2020, (4): 127–134
[3] 曹昌林, 吕慧卿, 郝志萍, 高翔, 周忠宇. 叶面喷施锌、硼肥对晋荞麦(苦)5号产量和品质的影响[J]. 作物杂志, 2020, (4): 135–142
[4] 范园园, 吴海梅, 逄蕾, 路建龙, 夏博文, 杨旭海. 基于Meta分析评价秸秆覆盖对我国北方半干旱区不同生态区域小麦产量的影响[J]. 作物杂志, 2020, (4): 143–149
[5] 李强, 孔凡磊, 袁继超. 年际气象差异对西南丘陵区玉米物质积累与产量的影响[J]. 作物杂志, 2020, (4): 150–157
[6] 刘东军, 宋维富, 杨雪峰, 赵丽娟, 宋庆杰, 张春利, 辛文利, 肖志敏. 小麦Fhb1基因定位、克隆及其在抗赤霉病育种中利用的研究进展[J]. 作物杂志, 2020, (4): 16–20
[7] 胡继芳. 拔节孕穗期水分控制对不同旱稻品种生长发育及产量的影响[J]. 作物杂志, 2020, (4): 178–182
[8] 杨永青, 高芳芳, 马亚君, 陈鑫, 张杰. 山西省旱作农业区不同施肥处理对谷子产量、品质及经济效益的影响[J]. 作物杂志, 2020, (4): 195–201
[9] 张谦, 李耀发, 王树林, 王燕, 冯国艺, 林永增, 梁青龙, 雷晓鹏, 祁虹. 棉花–小麦条带种植对棉花苗蚜发生及为害的影响[J]. 作物杂志, 2020, (4): 206–210
[10] 杨子光, 郭利磊, 张珂, 孙军伟, 孟丽梅. 黄淮旱地冬小麦主要性状演变规律研究[J]. 作物杂志, 2020, (4): 30–36
[11] 王中秋, 应鹏飞, 陈梦涛, 贺琼颖, 胡鑫. 普通小麦-野生二粒小麦染色体臂置换系籽粒与品质性状分析[J]. 作物杂志, 2020, (4): 37–44
[12] 陈卫国, 张政, 史雨刚, 曹亚萍, 王曙光, 李宏, 孙黛珍. 211份小麦种质资源抗旱性的评价[J]. 作物杂志, 2020, (4): 53–
[13] 单子龙, 班进福, 赵彦坤, 曹巧, 田国英, 何明琦, 高振贤. 河北省小麦品质相关基因的KASP标记检测[J]. 作物杂志, 2020, (4): 64–71
[14] 徐园园, 赵鹏, 洪权春, 朱晓琴, 裴冬丽. 小麦转录因子基因TaMYB70的分离和表达分析[J]. 作物杂志, 2020, (4): 84–90
[15] 宋晓, 黄晨晨, 黄绍敏, 张珂珂, 岳克, 张水清, 郭斗斗, 张玉亭. 不同耕作和有机培肥措施对土壤理化性质及小麦产量的影响[J]. 作物杂志, 2020, (3): 102–108
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!