作物杂志,2020, 第4期: 91–98 doi: 10.16035/j.issn.1001-7283.2020.04.013

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

太湖地区地方特色糯稻品种鸭血糯和苏御糯稻米理化特性研究

朱正斌1(), 杨勇2, 冯琳皓2, 陆彦2, 沈雪林1, 刘巧泉2, 张昌泉2()   

  1. 1苏州市种子管理站,215011,江苏苏州
    2植物功能基因组学教育部重点实验室/江苏省作物基因组学和分子育种重点实验室,扬州大学农学院,225009,江苏扬州
  • 收稿日期:2019-11-28 修回日期:2020-05-07 出版日期:2020-08-15 发布日期:2020-08-11
  • 通讯作者: 张昌泉
  • 作者简介:朱正斌,主要从事水稻地方品种种质资源保护研究,E-mail: jielinren@126.com
  • 基金资助:
    国家自然科学基金(31561143008);国家自然科学基金(31872860);国家自然科学基金(31901517);江苏省科技计划(19KJA560006);江苏省科技计划(BE2018357);江苏省农业科技自主创新基金(CX181001);苏州市科技计划(SNG201902)

Study on Physicochemical Properties of Local Waxy Rice Varieties Yaxuenuo and Suyunuo from Taihu Lake Area

Zhu Zhengbin1(), Yang yong2, Feng Linhao2, Lu Yan2, Shen Xuelin1, Liu Qiaoquan2, Zhang Changquan2()   

  1. 1Suzhou Seed Management Station, Suzhou 215011, Jiangsu, China
    2Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2019-11-28 Revised:2020-05-07 Online:2020-08-15 Published:2020-08-11
  • Contact: Zhang Changquan

摘要:

为分析太湖地区地方特色糯稻品种稻米品质性状,为后续特色糯稻种质的开发和利用提供依据,以鸭血糯和苏御糯及对照品种红壳糯和白壳糯为材料,分析了稻米的基本理化品质和淀粉结构特性。结果表明,鸭血糯和苏御糯具有较高的蛋白质含量和表观直链淀粉含量;鸭血糯和苏御糯米粉和淀粉均表现出较低的黏滞性,通过淀粉粒扫描电镜分析发现较小的淀粉粒可能是导致鸭血糯和苏御糯米粉和淀粉黏滞性较低的重要原因;热力学特性分析结果表明,鸭血糯淀粉具有最高的糊化温度和热焓值并且较易发生回生,其次是苏御糯淀粉;晶体结构分析表明,4个糯稻淀粉均表现为典型的A类型晶体结构,但鸭血糯淀粉的长程有序程度和短程有序程度均最高,其次是苏御糯淀粉。

关键词: 糯稻, 稻米品质, 淀粉结构, 糊化温度, 晶体结构

Abstract:

In order to provide useful information for the subsequent utilization of local waxy rice germplasm resources, we evaluated the grain quality characteristics of four local waxy rice varieties (Yaxuenuo, Suyunuo, Hongkenuo and Baikenuo) from Taihu Lake region. Basic physical, chemical profiles and starch structure characteristics of four rice varieties were analyzed. The results showed that the Yaxuenuo and Suyunuo contained the highest total protein content and apparent amylose content. Flours and starch of Yaxuenuo and Suyunuo both exhibited an obvious low viscosity. The starch was isolated and analyzed by scanning electron micrographs. The results showed that the average size of starch was smaller in Yaxuenuo and Suyunuo, which might be an important reason for the low starch viscosity. The starch thermal properties was measured by differential scanning calorimetry thermal analyzer, and the data showed that starch from Yaxuenuo had the highest gelatinization curve and followed by Suyunuo. The crystal structure analysis showed that four waxy rice starch displayed a typical A-type crystal type, however, the long-range order and short-range orders structures of Yaxuenuo starch were the highest, followed by Suyunuo starch.

Key words: Waxy rice, Grain quality, Starch structure, Gelatinization temperature, Crystal structure

表1

不同糯稻品种的基本理化指标

品种
Variety
表观直链淀粉含量
Apparent amylose content (%)
胶稠度
Gel consistency (mm)
总淀粉含量
Total starch content (%)
总蛋白含量
Total protein content (%)
红壳糯Hongkenuo 1.7±0.1B 112.6±5.8A 73.98±2.5A 5.6±0.2C
白壳糯Baikenuo 1.8±0.1B 114.8±8.2A 74.12±3.1A 5.8±0.3C
苏御糯Suyunuo 2.8±0.5A 108.3±9.7A 76.17±1.3A 6.5±0.4B
鸭血糯Yaxuenuo 3.1±0.1A 112.4±8.5A 75.85±2.7A 8.2±0.2A

图1

不同糯稻品种米粉(a)和淀粉(b)的RVA比较

表2

不同糯稻品种米粉和淀粉RVA糊化特征值比较

样品
Sample
峰值黏度
Peak viscosity
(cP)
热浆黏度
Hot paste
viscosity (cP)
崩解值
Breakdown
viscosity value (cP)
冷胶黏度
Cool paste
viscosity (cP)
消减值
Setback viscosity
value (cP)
峰值时间
Peak time
(min)
糊化温度
Pasting
temperature (℃)
红壳糯-F
Hongkenuo-F
1 550.00±12.73B 420.50±3.54B 1 129.50±9.19B 558.50±7.78B -991.50±4.95C 3.45±0.03B 67.65±0.08D
白壳糯-F
Baikenuo-F
1 614.50±12.03A 446.50±9.19A 1 168.00±2.83A 578.50±3.54A -1 036.00±8.49D 3.47±0.01B 68.53±0.03C
苏御糯-F
Suyunuo-F
945.00±8.49C 380.50±13.43C 564.50±4.95C 518.00±4.24C -427.00±4.24B 3.66±0.08A 70.45±0.49B
鸭血糯-F
Yaxuenuo-F
461.50±12.03D 139.00±4.24D 322.50±7.78D 218.50±3.54D -243.00±15.56A 3.76±0.03A 75.02±0.17A
红壳糯-S
Hongkenuo-S
1 315.00±12.73B 97.00±7.07B 1 218.00±19.80A 121.00±2.83A -1 194.00±15.56D 3.32±0.02C 68.40±0.14D
白壳糯-S
Baikenuo-S
1 342.00±15.56A 105.00±11.31A 1 237.00±4.24A 121.50±10.61A -1 220.50±4.95C 3.45±0.02B 70.08±0.05C
苏御糯-S
Suyunuo-S
812.50±13.44C 88.00±7.07C 724.00±6.36B 109.50±7.78B -703.50±5.66B 3.44±0.04B 70.69±0.29B
鸭血糯-S
Yaxuenuo-S
675.50±9.19D 70.00±4.24D 605.50±4.95C 84.00±4.24C -591.50±4.95A 3.69±0.06A 74.22±0.04A

图2

不同糯稻品种蒸煮后籽粒断面和淀粉粒的扫描电镜分析 a~d,e~h分别为红壳糯、白壳糯、苏御糯和鸭血糯

图3

不同糯稻原淀粉和回生淀粉的DSC吸热曲线

表3

不同糯稻品种原淀粉和回生淀粉的热力学特征值比较

样品Sample To (℃) Tp (℃) Tc (℃) ΔH (J/g)
红壳糯-G Hongkenuo-G 56.84±0.19C 64.35±0.07C 77.25±0.07C 10.11±0.03B
白壳糯-G Baikenuo-G 57.03±0.16C 64.34±0.06C 77.60±0.57C 10.28±0.14B
苏御糯-G Suyunuo-G 59.15±0.21B 67.15±0.21B 79.75±0.35B 10.66±0.26B
鸭血糯-G Yaxuenuo-G 62.15±0.09A 68.85±0.07A 83.10±0.48A 11.33±0.17A
红壳糯-R Hongkenuo-R 51.90±0.42A 57.05±0.21B 62.95±0.21B 1.15±0.15C
白壳糯-R Baikenuo-R 52.47±0.51A 58.40±0.42B 63.65±0.35B 1.70±0.34C
苏御糯-R Suyunuo-R 52.15±0.35A 59.90±0.42A 65.50±0.28A 3.26±0.23B
鸭血糯-R Yaxuenuo-R 51.70±0.28A 59.75±0.07A 66.05±0.21A 8.37±0.08A

图4

不同糯稻品种淀粉的X射线衍射(a)和傅里叶变换红外光谱(b)分析

表4

不同糯稻品种的X射线衍射和傅里叶变换红外光谱分析参数(n=2)

品种Variety 结晶度
Crystallinity (%)
短程有序度
Short-range order
红壳糯Hongkenuo 35.02±0.61C 0.84±0.02C
白壳糯Baikenuo 34.79±0.42C 0.83±0.01C
苏御糯Suyunuo 36.16±0.29B 0.90±0.01B
鸭血糯Yaxuenuo 37.24±0.36A 0.94±0.02A
[1] Tilman D, Balzer C, Hill J , et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(50):20260-20264.
[2] Feng F, Li Y J, Qin X L , et al. Changes in rice grain quality of indica and japonica type varieties released in China from 2000 to 2014. Frontiers in Plant Science, 2017,8:1863.
[3] Tian Z X, Qian Q, Liu Q Q , et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(51):21760-21765.
[4] 于梅梅, 陶权丹, 华杰 , 等. 香软米水稻的研究进展. 江苏农业科学, 2019,47(10):11-15.
[5] Manners D J . Recent developments in our understanding of amylopectin structure. Carbohydrate Polymers, 1989,11(2):87-112.
[6] Nakamura Y . Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants:rice endosperm as a model tissue. Plant Cell Physiology, 2002,43(7):718-725.
[7] Cheetham N W H, Tao L P . Variation in crystalline type with amylose content in maize starch granules:an X-ray powder diffraction study. Carbohydrate Polymers, 1998,36(4):277-284.
[8] 满建民, 蔡灿辉, 严秋香 , 等. 红外光谱技术在淀粉粒有序结构分析中的应用. 作物学报, 2012,38(3):505-513.
[9] 贺晓鹏, 朱昌兰, 刘玲珑 , 等. 不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系. 作物学报, 2010,36(2):276-284.
[10] Li H Y, Gilbert R G . Starch molecular structure:The basis for an improved understanding of cooked rice texture. Carbohydrate Polymers, 2018,195:9-17.
[11] 陆彦, 张晓敏, 祁琰 , 等. 不同透明度水稻籽粒横断面扫描电镜分析. 中国水稻科学, 2018,32(2):189-199.
[12] Zhang C Q, Zhu L J, Shao K , et al. Toward underlying reasons for rice starches having low viscosity and high amylose:physiochemical and structural characteristics. Journal of the Science of Food and Agriculture, 2013,93(7):1543-1551.
[13] Takeda Y, Maruta N, Hizukuri S , et al. Structure of indica rice starches (IR48 and IR64) having intermediate affinity for iodine. Carbohydrate Polymers, 1989,187(2):287-294.
[14] 舒庆尧, 吴殿星, 夏英武 , 等. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998,3(1):25-29.
[15] Li Y, Shoemake C F, Ma J G , et al. Structure-viscosity relationships for starches from different rice varieties during heating. Food Chemistry, 2008,106(3):1105-1112.
[16] Cooke D, Gidley M J . Loss of crystalline and molecular order during starch gelatinisation:origin of the enthalpic transition. Carbohydrate Research, 1992,227:103-112.
[17] Sevenou O, Hill S E, Farhat I A , et al. Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 2002,31(1/2/3):79-85.
[18] Cai J W, Man J M, Huang J , et al. Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydrate Polymers, 2015,125:3544.
[19] 俞良 . 特种稻品种“鸭血糯”的应用价值及其标准化栽培技术. 上海农业科技, 2007(6):35-36.
[20] Yamanaka S, Nakamura I, Watanabe K N , et al. Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theoretical and Applied Genetics, 2004,108(7):1200-1204.
[21] 范名宇, 王晓菁, 王旭虹 , 等. 稻米支链淀粉结构的研究进展. 中国水稻科学, 2017,31(2):124-132.
[22] Zhang C Q, Zhu J H, Chen S J , et al. Wx lv,the ancestral allele of rice waxy gene . Molecular Plant. 2019,12:1157-1166.
[23] 朱正斌, 戴华军, 夏肄锋 , 等. 播期和肥料运筹对水稻地方品种苏御糯产量和抗性的影响. 现代农业科技, 2017(1):15-17.
[1] 田玉聪, 段门俊, 朱杰, 冯香诏, 高珍珍, 刘章勇, 陈阜, 金涛. 气象条件对优质再生稻米形成的影响[J]. 作物杂志, 2020, (3): 125–131
[2] 朱安,高捷,黄健,汪浩,陈云,刘立军. 水稻根系形态生理及其与稻米品质关系的研究进展[J]. 作物杂志, 2020, (2): 1–8
[3] 张丽丽,赵一洲,李鑫,毛艇,刘研,张战,倪善君,刘福才. 60Co-γ射线辐照对不同粳稻品种后代稻米品质性状变异的影响[J]. 作物杂志, 2018, (3): 51–56
[4] 王洁,曾波,雷财林,赵志超,王久林,程治军. 北方国家水稻区域试验近15年参试品种分析[J]. 作物杂志, 2018, (1): 71–76
[5] 李洪亮, 孙玉友, 曲金玲, 魏才强, 孙国宏, 赵云彤, 赵立斐, 柴永山. 不同生态环境对水稻碳氮代谢关键酶活性及稻米品质的影响[J]. 作物杂志, 2012, (4): 53–57
[6] 王苏影, 潘晓华, 吴建富, 等. 磷肥运筹对双季早、晚稻产量与品质的影响[J]. 作物杂志, 2011, (4): 63–66
[7] 谭洪仁, 邓文敏, 邓达胜, 等. 杂交糯稻辐糯优396高产栽培技术[J]. 作物杂志, 2008, (5): 103–103
[8] 卢碧林, 王维金. 新型植物生长调节物质对水稻产量及品质的影响研究[J]. 作物杂志, 2005, (5): 30–32
[9] 杨泽敏, 雷振山, 周竹青. 氮肥施用时期对中籼稻米品质的影响[J]. 作物杂志, 2005, (4): 38–40
[10] 孙惠友, 胡晨康, 谢杏松. 紫黑糯稻杂种优势利用初探[J]. 作物杂志, 2003, (3): 44–45
[11] 马玉清, 李仕贵, 汪旭东, 等. 四川省优质稻产业化发展的对策[J]. 作物杂志, 2002, (6): 8–9
[12] 孙惠友, 胡晨康, 王志祥, 等. 优质晚粳糯稻品种绍糯9714的选育[J]. 作物杂志, 2002, (4): 54–54
[13] 马玉清, 李仕贵, 汪旭东, 等. 四川优质水稻育种现状与发展对策[J]. 作物杂志, 2002, (2): 47–49
[14] 赵全志, 刘惠超, 高尔明, 等. 粳稻叶片和茎秆形态与品质的关系[J]. 作物杂志, 2001, (6): 12–14
[15] 杨丽敏. 优质米品种空育131的良种良法[J]. 作物杂志, 2001, (2): 26–27
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!