作物杂志,2020, 第5期: 17–22 doi: 10.16035/j.issn.1001-7283.2020.05.003

• 专题综述 • 上一篇    下一篇

小麦高分子量谷蛋白亚基缺失品质效应研究进展

张晓1(), 李曼1, 陆成彬1, 吴宏亚1, 江伟1, 高德荣1,2()   

  1. 1江苏里下河地区农业科学研究所/农业农村部长江中下游小麦生物学与遗传育种重点实验室,225007,江苏扬州
    2扬州大学/江苏省粮食作物现代产业技术协同创新中心,225009,江苏扬州
  • 收稿日期:2020-02-28 修回日期:2020-03-08 出版日期:2020-10-15 发布日期:2020-10-12
  • 通讯作者: 高德荣
  • 作者简介:张晓,主要从事小麦育种研究,E-mail: zx@wheat.org.cn
  • 基金资助:
    江苏省基础研究计划(自然科学基金)-青年基金项目(BK20160448);江苏省农业重大新品种创制项目(PCCZ201705);江苏省农业科技自主创新资金项目(CX181001)

Review on the Effects of High-Molecular-Weight Glutenin Subunit Deletions on Wheat Quality

Zhang Xiao1(), Li Man1, Lu Chengbin1, Wu Hongya1, Jiang Wei1, Gao Derong1,2()   

  1. 1Lixiahe Institute of Agricultural Sciences of Jiangsu/Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
    2Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China
  • Received:2020-02-28 Revised:2020-03-08 Online:2020-10-15 Published:2020-10-12
  • Contact: Gao Derong

摘要:

高分子量谷蛋白亚基(high-molecular-weight glutenin subunits,HMW-GS)是小麦籽粒贮藏蛋白的重要组成成分,其数量和质量与品质密切相关。聚合优质HMW-GS可改良强筋小麦制品面包品质,相反HMW-GS缺失可能在弱筋小麦制品饼干、糕点或其他特色食品品质改良上具有重要应用价值。本文从小麦HMW-GS缺失的类型和机制、贮藏蛋白组分和蛋白体发育、面粉和面团品质效应以及食品加工品质改良等方面进行了综述,分析了当前小麦HMW-GS缺失研究利用中存在的问题,并对未来研究方向进行了展望。

关键词: 小麦, 高分子量谷蛋白亚基, 缺失, 品质

Abstract:

High-molecular-weight glutenin subunits (HMW-GSs) are important components of storage protein in wheat grains. Wheat quality is directly influenced by composition and quantity of HMW-GSs. People generally attach importance to the improvement of bread quality of strong gluten wheat products by polymerization of high-quality HMW-GSs. On the contrary, the HMW-GS deletions may provide an important application value for improvement of biscuit and pastry of weak gluten wheat products or other traits food quality. In this paper, the types and mechanisms of HMW-GS deletions and the effects of HMW-GS deletions on storage protein components, development of protein body, flour and dough quality, and improvement of food processing quality are reviewed. Besides, the problems in current research and utilization of HMW-GS deletions are analyzed, and the future research directions are prospected.

Key words: Wheat, HMW-GS, Deletion, Quality

[1] Seilmeier W, Belitz H D, Wieser H. Separation and quantitative determination of high-molecular-weight subunits of glutenin from different wheat varieties and genetic variants of the variety Sicco. European Food Research and Technology, 1991,192(2):124-129.
[2] Halford N G, Field J M, Blair H, et al. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theoretical and Applied Genetics, 1992,83(3):373-378.
doi: 10.1007/BF00224285 pmid: 24202521
[3] Branlard G, Dardevet M. Diversity of grain protein and bread wheat quality:II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. Journal of Cereal Science, 1985,3(4):345-354.
doi: 10.1016/S0733-5210(85)80007-2
[4] Weegels P L, Hamer R J, Schofield J D. Functional properties of wheat glutenin. Journal of Cereal Science, 1996,23(1):1-17.
doi: 10.1006/jcrs.1996.0001
[5] Shewry P R, Halford N G. Cereal seed storage proteins:Structures,properties and role in grain utilization. Journal of Experimental Botany, 2002,53(370):947-958.
doi: 10.1093/jexbot/53.370.947 pmid: 11912237
[6] Payne P I. Genetics of wheat storage proteins and the effect of allelic variation of bread-making quality. Annual Review of Plant Physiology, 1987,38(1):141-153.
doi: 10.1146/annurev.pp.38.060187.001041
[7] Shewry P R, Tatham A S. The prolamin storage proteins of cereal seeds:structure and evolution. Biochemical Journal, 1990,267(1):1-12.
doi: 10.1042/bj2670001 pmid: 2183790
[8] Shewry P R, Halford N G, Tatham A S. High molecular weight subunits of wheat glutenin. Journal of Cereal Science, 1992,15(2):105-120.
doi: 10.1016/S0733-5210(09)80062-3
[9] MacRitchie F, Lafiandra D. Use of near-isogenic wheat lines to determine protein composition-functionality relationships. Cereal Chemistry, 2001,78(5):501-506.
doi: 10.1094/CCHEM.2001.78.5.501
[10] He Z H, Liu L, Xia X C, et al. Composition of HMW and LMW glutenin subunits and their effects on dough properties,pan bread,and noodle quality of Chinese bread wheats. Cereal Chemistry, 2005,82(4):345-350.
doi: 10.1094/CC-82-0345
[11] Liu L, He Z, Yan J, et al. Allelic variation at the Glu-1 and Glu-3 loci,presence of the 1B.1R translocation,and their effects on mixographic properties in Chinese bread wheats. Euphytica, 2005,142(3):197-204.
doi: 10.1007/s10681-005-1682-4
[12] Jin H, Zhang Y, Li G Y, et al. Effects of allelic variation of HMW-GS and LMW-GS on mixograph properties and Chinese noodle and steamed bread qualities in a set of Aroona near-isogenic wheat lines. Journal of Cereal Science, 2013,57:146-152.
[13] 刘悦, 杨足君, 李光蓉, 等. 四川南部和重庆地区小麦地方品种的高分子量谷蛋白亚基组成分析. 麦类作物学报, 2006,26(4):47-50.
doi: 10.7606/j.issn.1009-1041.2006.04.151
[14] 董永梅, 杨欣明, 柴守诚, 等. 中国小麦代表性地方品种高分子量麦谷蛋白亚基组成分析. 麦类作物学报, 2007,27(5):820-824.
doi: 10.7606/j.issn.1009-1041.2007.05.201
[15] 杨恩年, 张洁, 杨武云, 等. 六倍体普通小麦高分子量谷蛋白亚基Glu-A1Glu-B1共同缺失材料研究初报. 西南农业学报, 2007,20(2):293-295.
[16] Lawrence G J, MacRitchie F,Wrigley C W. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1,Glu-B1 and Glu-D1 loci. Journal of Cereal Science, 1988,7:109-112.
doi: 10.1016/S0733-5210(88)80012-2
[17] D′Ovidio R, Porceddu E, Lafinadra D. PCR analysis of genes encoding allelic variants of high molecular weight glutenin subunits at the Glu-D1 locus. Theoretical and Applied Genetics, 1994,88:175-180.
doi: 10.1007/BF00225894 pmid: 24185923
[18] Gu Y Q, Salse J, ColemanDerr D,et al. Types and rates of sequence- evolution at the high molecular weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics, 2006,174(3):1493-1504.
doi: 10.1534/genetics.106.060756 pmid: 17028342
[19] Forde J, Malpica J M, Halford N G, et al. The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum eastivum L.). Nucleic Acids Research, 1985,13(19):6817-6832.
doi: 10.1093/nar/13.19.6817 pmid: 2997729
[20] 朱银锋. 小麦品种小偃54高分子量麦谷蛋白亚基1Bx14缺失突变体的产生及缺失机理分析. 北京:中国科学院遗传与发育生物学研究所, 2005.
[21] 郭小敏. 小麦品种小偃54一套HMW-GS缺失突变体系的创建和1By15亚基缺失突变机理及功能分析. 北京:中国科学院遗传与发育生物学研究所, 2008.
[22] Yuan Z W, Chen Q J, Zhang L Q, et al. Molecular characterization of two silenced y-type genes for Glu-B1 in Triticum aestivum ssp. yunnanese and ssp. Tibetanum. Journal of Integrative Plant Biology, 2009,51(1):93-99.
doi: 10.1111/j.1744-7909.2008.00775.x
[23] 王宏霞. 小麦HMW-GS 1Bx7缺失机理及其对加工品质的影响研究. 北京:中国科学院, 2012.
[24] 郑雯. 野生二粒小麦1Ay高分子量谷蛋白亚基的分子克隆及其“表达-沉默”机理探讨. 成都:四川农业大学, 2008.
[25] 李宁. 高分子量麦谷蛋白1Dx2+1Dy12亚基缺失的分子机理及其与小麦加工品质关系的研究. 北京:中国科学院遗传与发育生物学研究所, 2005.
[26] Uthayakumaran S, Lukow O M, Jordan M C, et al. Development of genetically modified wheat to assess its dough functional properties. Molecular Breeding, 2003,11(4):249-258.
doi: 10.1023/A:1023461305848
[27] Don C, Mann G, Bekes F, et al. HMW-GS affect the properties of glutenin particles in GMP and thus flour quality. Journal of Cereal Science, 2006,44(2):127-136.
doi: 10.1016/j.jcs.2006.02.005
[28] 张平平, 马鸿翔, 姚金保, 等. Glu-1位点缺失对小麦麦谷蛋白聚合体粒度分布及面团特性的影响. 作物学报, 2015,41(1):22-30.
doi: 10.3724/SP.J.1006.2015.00022
[29] 张平平, 马鸿翔, 姚金保, 等. 高分子量谷蛋白单亚基缺失对软质小麦宁麦9号加工品质的影响. 作物学报, 2016,42(5):633-640.
doi: 10.3724/SP.J.1006.2016.00633
[30] 张纪元, 张平平, 姚金保, 等. 以EMS诱变创制软质小麦宁麦9号高分子量谷蛋白亚基突变体. 作物学报, 2014,40(9):1579-1584.
doi: 10.3724/SP.J.1006.2014.01579
[31] Ma M, Yan Y, Huang L, et al. Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biology, 2012,12(1):141.
doi: 10.1186/1471-2229-12-141
[32] Zhu J T, Hao P C, Chen G X, et al. Molecular cloning,phylogenetic analysis,and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.). BMC Plant Biology, 2014,14(1):260.
doi: 10.1186/s12870-014-0260-0
[33] Liu H Y, Wang K, Xiao L L, et al. Comprehensive identification and bread-Making quality evaluation of common wheat somatic variation line AS208 on glutenin composition. PLoS ONE, 2016,11(1):e0146933.
pmid: 26765256
[34] 刘会云, 王婉晴, 李欣, 等. 小麦突变体AS208中Glu-B1位点缺失对籽粒中蛋白体形成和储藏蛋白合成与加工相关基因表达的影响. 作物学报, 2017,43(5):691-700.
[35] Gao X, Liu T H, Ding M Y, et al. Effects of HMW-GS Ax1 or Dx2 absence on the glutenin polymerization and gluten micro structure of wheat (Triticum aestivum L. ). Food Chemistry, 2018,240:626-633.
doi: 10.1016/j.foodchem.2017.07.165 pmid: 28946321
[36] Yang Y S, Li S M, Zhang K P, et al. Efficient isolation of ion beam-induced mutants for homoeologousloci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. Theoretical and Applied Genetics, 2014,127:359-372.
doi: 10.1007/s00122-013-2224-4
[37] Graveland A, Bosveld P, Lichtendonk W J, et al. A model for the molecular structure of the glutenins from wheat flour. Journal of Cereal Science, 1985,3(1):1-16.
doi: 10.1016/S0733-5210(85)80029-1
[38] Tatham A S, Shewry P R, Belton P S. Structural studies of cereal prolamins,including wheat gluten. Advances in Cereal Science and Technology, 1990,10:1-78.
[39] Wang D W, Li F, Cao S H, et al. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. Theoretical and Applied Gennetics, 2020,133(5):1521-1539.
[40] Wrigley C W, Asenstorfer R, Batey I, et al. The biochemical and molecular basis of wheat quality//Carver B F. Wheat science and trade. New Jersey: Wiley-Blackwell, 2009: 495-520 .
[41] Ram S, Shoran J, Mishra B. Nap Hal,an Indian landrace of wheat,contains unique genes for better biscuit making quality. Journal of Plant Biochemistry and Biotechnology, 2007,16(2):83-86.
doi: 10.1007/BF03321979
[42] Yue S J, Li H, Li Y W, et al. Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference. Journal of Cereal Science, 2008,47(2):153-161.
doi: 10.1016/j.jcs.2007.03.006
[43] 武茹. 小麦HMW-GS缺失种质资源的筛选鉴定及其品质效应研究. 扬州:扬州大学, 2011.
[44] Mondal S, Tilley M, Alviola J N, et al. Use of near-isogenic wheat lines to determine the glutenin composition and functionality requirements for flour tortillas. Journal of Agricultural and Food Chemistry, 2008,56(1):179-184.
doi: 10.1021/jf071831s pmid: 18072743
[45] Zhang L, Chen Q, Su M, et al. High molecular weight glutenin subunits deficient mutants induced by ion beam and the effects of Glu-1 loci deletion on wheat quality properties. Journal of the Science of Food and Agriculture, 2015,96(4):1289-1296.
doi: 10.1002/jsfa.7221 pmid: 25886243
[46] Zhang X, Zhang B Q, Wu H Y, et al. Effect of high-molecular-weight glutenin subunit deletion on soft wheat quality properties and sugar-snap cookie quality estimated through near-isogenic lines. Journal of Integrative Agriculture, 2018,17(5):1066-1073.
doi: 10.1016/S2095-3119(17)61729-5
[47] Belitz H D, Grosch W, Schieberle P. Food chemistry. Berlin:Springer Verlag, 2009: 670-710.
[48] 陈锋, 李根英, 耿洪伟, 等. 小麦籽粒硬度及其分子遗传基础研究回顾与展望. 中国农业科学, 2005(6):1088-1094.
[49] Chen F, Li H H, Cui D Q. Discovery,distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.). BMC Plant Biology, 2013,13.
doi: 10.1186/1471-2229-13-211 pmid: 24330683
[50] Beasley H L, Uthayakumaran S, Stoddard F L, et al. Synergistic and additive effects of three high molecular weight glutenin subunit loci. II. Effects on wheat dough functionality and end-use quality. Cereal Chemistry, 2002,79(2):301-307.
doi: 10.1094/CCHEM.2002.79.2.301
[51] Zhang P P, Jondiko T O, Tilley M, et al. Effect of high molecular weight glutenin subunit composition in common wheat on dough properties and steamed bread quality. Journal of the Science of Food and Agriculture, 2014,94(13):2801-2806.
doi: 10.1002/jsfa.6635
[1] 刘文婷, 张新军, 杨才, 白静, 杨晓虹, 周海涛. 裸燕麦营养品质的差异性及形成因子解析[J]. 作物杂志, 2020, (5): 140–147
[2] 郑地, 文春燕, 沈显华, 胡标林, 车菊芹, 熊运华, 王智权, 吴延寿. 藏区不同海拔条件下水稻产量构成和米质变化分析[J]. 作物杂志, 2020, (5): 199–203
[3] 王芙蓉, 张建学, 郭岷江, 张亚宏, 范提平, 王亚宏, 张岩, 裴国平, 雷建明. 苗后除草剂喷施时期对杂草防治及冬油菜产量和品质的影响[J]. 作物杂志, 2020, (5): 204–208
[4] 秦鸿德, 荣义华, 黄晓莉, 胡爱兵, 周家华, 闫显会, 李蔚, 张贤红, 李洪菊, 杨国正. 简化施肥夏直播棉对密度和氮肥的响应[J]. 作物杂志, 2020, (4): 127–134
[5] 曹昌林, 吕慧卿, 郝志萍, 高翔, 周忠宇. 叶面喷施锌、硼肥对晋荞麦(苦)5号产量和品质的影响[J]. 作物杂志, 2020, (4): 135–142
[6] 范园园, 吴海梅, 逄蕾, 路建龙, 夏博文, 杨旭海. 基于Meta分析评价秸秆覆盖对我国北方半干旱区不同生态区域小麦产量的影响[J]. 作物杂志, 2020, (4): 143–149
[7] 刘东军, 宋维富, 杨雪峰, 赵丽娟, 宋庆杰, 张春利, 辛文利, 肖志敏. 小麦Fhb1基因定位、克隆及其在抗赤霉病育种中利用的研究进展[J]. 作物杂志, 2020, (4): 16–20
[8] 杨永青, 高芳芳, 马亚君, 陈鑫, 张杰. 山西省旱作农业区不同施肥处理对谷子产量、品质及经济效益的影响[J]. 作物杂志, 2020, (4): 195–201
[9] 张谦, 李耀发, 王树林, 王燕, 冯国艺, 林永增, 梁青龙, 雷晓鹏, 祁虹. 棉花–小麦条带种植对棉花苗蚜发生及为害的影响[J]. 作物杂志, 2020, (4): 206–210
[10] 杨子光, 郭利磊, 张珂, 孙军伟, 孟丽梅. 黄淮旱地冬小麦主要性状演变规律研究[J]. 作物杂志, 2020, (4): 30–36
[11] 王中秋, 应鹏飞, 陈梦涛, 贺琼颖, 胡鑫. 普通小麦-野生二粒小麦染色体臂置换系籽粒与品质性状分析[J]. 作物杂志, 2020, (4): 37–44
[12] 杨斌, 闫雪, 温宏伟, 王曙光, 逯腊虎, 范华, 景蕊莲, 孙黛珍. 不同水分条件下小麦持绿表型性状评价及其与产量相关性研究[J]. 作物杂志, 2020, (4): 45–52
[13] 陈卫国, 张政, 史雨刚, 曹亚萍, 王曙光, 李宏, 孙黛珍. 211份小麦种质资源抗旱性的评价[J]. 作物杂志, 2020, (4): 53–63
[14] 单子龙, 班进福, 赵彦坤, 曹巧, 田国英, 何明琦, 高振贤. 河北省小麦品质相关基因的KASP标记检测[J]. 作物杂志, 2020, (4): 64–71
[15] 徐园园, 赵鹏, 洪权春, 朱晓琴, 裴冬丽. 小麦转录因子基因TaMYB70的分离和表达分析[J]. 作物杂志, 2020, (4): 84–90
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!