作物杂志,2021, 第2期: 165–172 doi: 10.16035/j.issn.1001-7283.2021.02.024

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

燕麦籽粒营养与农艺性状相关性分析

周月霞1(), 范昱1, 阮景军1, 严俊2, 赖弟利1, 彭艳1, 唐勇1, 翁文凤1, 程剑平1()   

  1. 1贵州大学麦作研究中心,520025,贵州贵阳
    2成都大学药学与生物工程学院,610106,四川成都
  • 收稿日期:2020-03-21 修回日期:2021-02-06 出版日期:2021-04-15 发布日期:2021-04-16
  • 通讯作者: 程剑平
  • 作者简介:周月霞,主要研究方向杂粮作物遗传育种,E-mail: zhouyuexiagui@hotmail.com
  • 基金资助:
    贵州省科技支撑计划项目《贵州酿酒高粱地方优良种质创新与利用》(黔科合支撑[2018]2292);国家自然科学基金(31660531);国家自然科学基金(31560578);国家国际科技合作专项项目(2013DFA32200)

Correlation Analysis of Oat Grain Nutrition and Agronomic Traits

Zhou Yuexia1(), Fan Yu1, Ruan Jingjun1, Yan Jun2, Lai Dili1, Peng Yan1, Tang Yong1, Weng Wenfeng1, Cheng Jianping1()   

  1. 1Wheat Farming Research Center, Guizhou University, Guiyang 520025, Guizhou, China
    2School of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
  • Received:2020-03-21 Revised:2021-02-06 Online:2021-04-15 Published:2021-04-16
  • Contact: Cheng Jianping

摘要:

为了进一步发掘利用高营养物质含量的燕麦籽粒基因和种质资源,以西北农林科技大学引进的60份栽培型燕麦为研究材料,种植于四川成都金堂县和四川甘孜州康定县两个地点,对收获籽粒的6个营养指标、4个产量指标和7个农艺性状进行测定。通过对不同环境中燕麦各营养成分与农艺性状性状进行显著性差异分析、网络相关性分析及主成分分析,筛选出高品质基因型XO-1-6、XO-1-12和XO-1-16,高产基因型XO-1-16、XO-1-17和XO-1-19,而且金堂县的籽粒营养高于康定县,籽粒产量及农艺性状总体低于康定县,营养品质与产量呈负相关,与株高呈正相关,与分蘖数呈负相关,说明燕麦的营养成分和产量除了受遗传性质影响外还受环境的制约;可将17个性状综合为5个主成分。本研究为在该地区选育高品质及高产燕麦资源提供研究材料,为燕麦生产研究奠定理论基础,对燕麦品质的遗传改良具有重要的参考意义。

关键词: 燕麦, 营养性状, 农艺性状, 显著性差异分析, 网络相关性, 主成分分析

Abstract:

In order to further explore and utilize the genes and germplasm resources with high nutrient content of oat grains, 60 cultivated oats introduced by Northwest Agriculture and Forestry University were used as research materials and planted in two environments (Jintang County, Chengdu, Sichuan and Kangding County, Ganzi Prefecture, Sichuan). There were six nutritional indicators, four yield indicators, and seven agronomic traits of grains determined. Through the significant differences, network correlation analysis and principal component analysis of oats in different environments, the nutritional components, and agronomic traits were studied, high-quality genotypes XO-1-6, XO-1-12, XO-1-16, high-yielding genotypes XO-1-16, XO-1-17, XO-1-19 were selected, and the grains nutrition in Jintang County was higher than that of Kangding County, grain yield and agronomic traits were generally lower than that of Kangding County. Nutritional quality was negatively correlated with yield, and it was positively correlated with plant height but negatively correlated with tillers number, indicating that the nutrient composition and yield of oats were not only affected by genetic properties but also by the environment. Seventeen traits could be integrated into five principal components. This thesis will provide research materials for breeding high-quality and high-yield oat resources in this area, laying a theoretical foundation for oat production research, and having important reference significance for genetic improvement of oat quality.

Key words: Oats, Nutritional traits, Agronomic traits, Significant difference analysis, Network correlation, Principal component analysis

表1

燕麦籽粒农艺性状及产量性状的平均值及范围

种植地
Planting
area
统计值
Statistic
株高(cm)
Plant height
(PH)
穗长(cm)
Spike length
(SL)
旗叶长(cm)
Flag leaf
length (FL)
旗叶宽(cm)
Flag leaf
width (FW)
总分蘖数
Total tillers
(TT)
有效分蘖数
Effective
tillers (ET)
第一节长(cm)
First section
length (FS)
单株产量(g)
Yield per
plant (YPP)
籽粒长(cm)
Grain length
(GL)
籽粒宽(cm)
Grain width
(GW)
千粒重(g)
1000-grain weight (TGW)
金堂县
Jintang
均值±标准差
Mean ± SD
112.48±17.50 28.93±5.88 18.92±3.74 1.31±0.40 15.10±5.95 13.12±5.35 36.78±6.09 2.78±1.62 0.85±0.14 0.27±0.13 26.02±3.65
范围Range 87.10~167.80 18.90~51.80 10.80~28.60 0.60~2.30 6.70~38.00 3.50~35.00 25.3~54.2 1.12~4.94 0.68~0.96 0.22~0.30 14.62~32.33
变异系数
Variable coefficient
0.16 0.20 0.20 0.31 0.39 0.41 0.17 0.58 0.07 0.05 0.14
康定县
Kangding
均值±标准差
Mean ± SD
101.24±21.95 26.29±6.17 18.33±4.13 1.86±0.42 9.70±3.14 9.00±2.83 39.96±8.02 4.11±2.53 0.86±0.64 0.29±0.15 31.24±4.42
范围Range 64.33~162.67 16.67~43.17 9.17~26.67 1.20~3.33 6.00~28.67 5.00~15.33 26.00~72.17 1.69~17.35 0.63~1.03 0.26~0.33 19.88~42.24
变异系数
Variable coefficient
0.22 0.23 0.23 0.23 0.32 0.31 0.20 0.62 0.07 0.05 0.14

表2

燕麦籽粒营养性状含量的平均值及范围

种植地
Planting area
统计值
Statistic
总类黄酮(mg/g)
Total flavonoids (TF)
总酚(mg/g)
Total phenol (TP)
植酸(mg/kg)
Phytic acid (PHY)
无机磷(mg/kg)
Inorganic phosphorus(PI)
黄色素(mg/kg)
Yellow pigment (YP)
氨基(mg/kg)
Amino (-NH2)
金堂县Jintang 均值±标准差
Mean ± SD
152.96±70.20 584.65±163.80 5.96±1.22 7.07±2.32 51.84±26.12 4.19±2.20
范围Range 31.76~312.84 153.04~1239.00 3.42~8.12 2.81~12.53 16.63~162.99 1.29~10.18
变异系数
Variable coefficient
0.46 0.28 0.21 0.33 0.50 0.52
康定县Kangding 均值±标准差
Mean ± SD
48.66±19.71 336.40±72.60 2.89±0.82 3.23±1.27 38.15±10.31 5.92±1.61
范围Range 21.34~210.30 196.70~507.70 1.34~4.73 1.34~6.79 3.35~66.85 2.91~10.42
变异系数
Variable coefficient
0.41 0.20 0.28 0.39 0.27 0.27

图1

不同环境中燕麦籽粒各营养性状含量比较 图中数值代表2个环境中3次重复的平均值±标准差,包括10个最高值、均值和10个最低值;不同字母表示材料间差异达0.05显著水平

图2

燕麦农艺性状及籽粒营养组分的相关性网络

表3

各成分因子向量载荷系数及方差贡献率

成分
Composition
初始特征值Initial eigenvalue 提取载荷平方和Load square
总计Total 方差百分比Percentage (%) 累积Cumulative(%) 总计Total 方差百分比Percentage (%) 累积Cumulative(%)
A 6.359 37.404 37.404 6.359 37.404 37.404
B 2.164 12.729 50.133 2.164 12.729 50.133
C 1.902 11.187 61.320 1.902 11.187 61.320
D 1.549 9.114 70.434 1.549 9.114 70.434
E 1.074 6.317 76.751 1.074 6.317 76.751
[1] 中国农学会遗传资源学会. 中国作物遗传资源. 北京: 中国农业出版社, 1994: 198-200.
[2] 林汝法, 柴岩, 廖琴, 等. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002: 126.
[3] 顾尧臣. 小宗粮食加工(一). 粮食与饲料工业, 1999(4):11-15.
[4] Yu X, Yang M, Dong J, et al. Comparative analysis of the antioxidant capacities and phenolic compounds of oat and buckwheat vinegars during production processes. Journal of Food Science, 2018,83(3):844-853.
[5] Ai H, Chang C Q. Research progress on nutritional components and functional factors in sports nutrition food. Journal of Food Science and Technology, 2017,35(3):16-24.
[6] 蹇黎, 秦小军, 余丹凤, 等. 喀斯特山区野生燕麦农艺性状的遗传多样性分析. 河南农业科学, 2013,42(6):27-31.
[7] 严俊, 王莹, Gutterman Y, 等. 起源地生态地理因素对野生二棱大麦生长的影响. 西南农业学报, 2010,23(6):1799-1804.
[8] Wang H Z, Yang L, Zu Y G, et al. Microwave-assisted simultaneous extraction of luteolin and apigenin from tree peony pod and evaluation of its antioxidant activity. The Scientific World Journal, 2014(1):1-12.
[9] Butt M S, Tahir-Nadeem M, Khan M K I, et al. Oat:unique among the cereals. European Journal of Nutrition, 2008,47(2):68-79.
[10] 赵丽那, 严俊, 薛文韬, 等. 燕麦籽粒多组分营养性状的相关性分析. 江西农业大学学报, 2016,38(4):623-630.
[11] 巴塔罗瓦·戈丽娜, 任长忠. 燕麦在膳食、医疗和化妆品方面的应用. 西安: 陕西科学技术出版社, 2011: 3-57.
[12] Prasad R, Alok J, Latha S, et al. Nutritional advantages of oats and opportunities for its processing as value added foods-are view. Food Science Technology, 2015,52(2):662-675.
[13] 刘新伦, 吉万全, 王长有. 燕麦在小麦遗传育种中的应用研究进展. 安徽农业科学, 2015,43(24):38-40,63.
[14] Zhi S J, Meng C T, Jiang M W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 1999,64(4):555-559.
[15] Ainsworth E A, Gillespie K M. Estimation of total phenolic content and other oxidation substrates in plant tissues using folin ciocalteu reagent. Nature Protocols, 2007,2(4):875-877.
[16] Latta M, Eskin M. A simple and rapid colorimetric method for phytate determination. Journal of Agricultural and Food Chemistry, 1980,28(6):1313-1315.
[17] Ficco D B M, Riefolo C, Nicastro G, et al. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crop Research, 2009,111(3):235-242.
[18] Adler-Nissen J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural Food Chemistry, 1979,27(6):1256-1262.
[19] 杨延兵, 张涵, 王润丰, 等. 谷子籽粒小米黄色素含量的测定. 中国粮油学报, 2019,34(3):121-125.
[20] Batushansky A, Toubiana D, Fait A. Correlation-based network generation,visualization,and analysis as a powerful tool in biological studies:a case study in cancer cell metabolism. Biomed Research International, 2016,20(2):1-9.
[21] Yan J, Zhang L L, Wang X M, et al. QTL mapping of yield related traits in durum wheat × wild emmer wheat RIL population. Journal of Shandong Agricultural University, 2011,42(2):163-171.
[22] Simmonds N W. The relation between yield and protein in cereal grain. Journal of the Science of Food and Agriculture, 1995,67(3):309-315.
[23] Peleg Z, Cakmak I, Ozturk L E. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theoretical and Applied Genetics, 2009,119(2):353-369.
[24] Uauy C, Distelfeld A, Fahima T, et al. A NAC gene regulating senescence improves grain protein,zinc,and iron content in wheat. Science, 2006,314(5803):1298-1301.
[25] Nevo E, Beiles A, Gutterman Y, et al. Genetic resources of wild cereals in Israel and vicinity. II. Pheno-typic variation within and between populations of wild barley,Hordeum spontaneum. Euphytica, 1984,33(3):737-756.
[26] Yan J, Wang Y, Nevo E, et al. Caryopsis dormancy patterns of wild barley (Hordeum spontaneum) and its association with agronomic traits and ecogeographical parameters. Plant Science Journal, 2011,29(3):352-361.
[27] 谭秀英, 严俊, 范昱, 等. 以色列野生燕麦种子形态、营养品质及其与起源地生态地理因素的相关性. 河南农业科学, 2019,48(11):27-33.
[28] 翟会生, 唐珊珊, 潘志芬, 等. 青稞籽粒主要组分对其淀粉膨胀势的影响. 应用与环境生物学报, 2017,23(2):193-199.
[29] 范昱, 赖弟利, 王佳俊, 等. 以色列野生燕麦物候及农艺性状与起源生态地理因素的相关性. 麦类作物学报, 2019,39(1):56-63.
[30] Terman C T. Yield and protein content of wheat grain as affected by cultivar,N,and environmental growth factors. Agronomy Journal, 1979,71(3):437-440.
[31] Zheng B Q, Pu L Y U, Wang X Y. Effects of waterlogging in different growth stages on the photosynthesis,growth,yield,and protein content of three wheat cultivars in Jianghan Plain. Agricultural Science and Technology, 2016,17(5):1083-1088.
[32] Lásztity R. Oat grain — a wonderful reservoir of natural nutrients and biologically active substances. Food Reviews International, 1998,14(1):99-119.
[1] 王炳策, 刘晓娟, 程斌, 任明见, 徐如宏, 张素勤, 张立异, 何方. 燕麦属植物核糖体DNA染色体定位及45S rDNA的系统进化分析[J]. 作物杂志, 2021, (4): 10–17
[2] 唐红琴, 李忠义, 董文斌, 韦彩会, 何铁光, 蒙炎成, 汤海玲, 莫永诚. 不同间作绿肥替代化肥模式对木薯性状和产量的影响[J]. 作物杂志, 2021, (4): 184–190
[3] 杜晓宇, 李楠楠, 邹少奎, 王丽娜, 吕永军, 张倩, 李顺成, 杨光宇, 韩玉林. 黄淮南片新育成小麦品种(系)主要性状的综合性分析[J]. 作物杂志, 2021, (4): 38–45
[4] 朱旭, 胡卫丽, 杨厚勇, 许阳, 向臻, 杨玲, 杨鹏程. 南阳盆地适宜机械化收获绿豆品种(系)农艺性状分析[J]. 作物杂志, 2021, (4): 93–98
[5] 赵宝平, 刘景辉, 任长忠. 燕麦产量形成生理机制研究进展[J]. 作物杂志, 2021, (3): 1–7
[6] 王慧芳, 张希, 冯小虎, 李一凡, 张红, 赵松超, 赵铭钦. 不同植物生长调节剂对烤烟生长发育的影响[J]. 作物杂志, 2021, (3): 173–177
[7] 王丽芳, 张德健, 张婷婷. 耕作方式对燕麦田土壤微生物群落多样性的影响[J]. 作物杂志, 2021, (3): 57–64
[8] 靳建刚, 田再芳. 山西北部地区引种苦荞品种的灰色关联度分析[J]. 作物杂志, 2021, (2): 52–56
[9] 王玉娇, 曹祺, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才, 石书兵. 不同土壤条件下化学调控对小麦产量和品质的影响[J]. 作物杂志, 2021, (2): 96–100
[10] 孙正冉, 吴昊, 张翠萍, 张晋丽, 贺道华. 棉花化学打顶剂的配制与筛选[J]. 作物杂志, 2021, (1): 112–117
[11] 周启龙. 西藏阿里19个燕麦引进品种的灰色关联度评价[J]. 作物杂志, 2021, (1): 26–31
[12] 潘晓雪, 胡明瑜, 王忠伟, 吴红, 雷开荣. 不同水稻种质资源重要农艺性状与发芽期耐寒性鉴定研究[J]. 作物杂志, 2021, (1): 47–53
[13] 白苇, 胡杨, 杨素梅, 张宝英, 崔金丽, 靳涛, 白海花. 冀西北食葵地方资源农艺性状分析[J]. 作物杂志, 2021, (1): 54–59
[14] 王琦, 孙雯, 武俊英, 刘景辉, 赵宝平. 不同灌水量下喷施腐植酸对燕麦光合特性及产量的影响[J]. 作物杂志, 2021, (1): 98–103
[15] 徐林, 吴凯朝, 庞天, 邓智年, 张荣华, 黄成丰, 黄海荣, 李毅杰, 刘晓燕, 覃文宪, 王维赞. 促根剂对甘蔗单芽种茎的生长及产量影响[J]. 作物杂志, 2020, (6): 132–136
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!