作物杂志,2021, 第4期: 59–66 doi: 10.16035/j.issn.1001-7283.2021.04.009

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

黑龙江省粳稻品种稻瘟病主效抗性基因鉴定与抗性评价

高清1(), 张亚玲1, 周弋力1, 于连鹏1, 聂强2, 靳学慧1()   

  1. 1黑龙江八一农垦大学/黑龙江省植物抗性研究中心,163319,黑龙江大庆
    2北大荒农垦集团有限公司建三江分公司农业发展部,156300,黑龙江佳木斯
  • 收稿日期:2020-08-31 修回日期:2020-11-19 出版日期:2021-08-15 发布日期:2021-08-13
  • 通讯作者: 靳学慧
  • 作者简介:高清,主要从事植物病理学研究,E-mail:gqing1198@163.com
  • 基金资助:
    黑龙江省自然科学基金(QC2011C046);黑龙江省农垦总局科技攻关计划(HNK125A-08-06);黑龙江省农垦总局科技攻关计划(HNKXIV-01-04-02);黑龙江省农垦总局科技攻关计划(HKKYZD190205);黑龙江省教育厅项目(12521376);黑龙江八一农垦大学学成、引进人才科研启动计划资助项目(XDB201605);黑龙江八一农垦大学学成、引进人才科研启动计划资助项目(XDB201802);黑龙江八一农垦大学研究生创新科研项目(YJSCX2019-Y18)

Identification of Major Resistance Genes and Resistance Evaluation to Rice Blast in Japonica Rice Varieties in Heilongjiang Province

Gao Qing1(), Zhang Yaling1, Zhou Yili1, Yu Lianpeng1, Nie Qiang2, Jin Xuehui1()   

  1. 1Heilongjiang Bayi Agricultural University/Heilongjiang Plant Resistance Research Center, Daqing 163319, Heilongjiang, China
    2Agricultural Development Department, Jiansanjiang Branch of Beidahuang Agricultural Reclamation Corporation, Jiamusi 156300, Heilongjiang, China
  • Received:2020-08-31 Revised:2020-11-19 Online:2021-08-15 Published:2021-08-13
  • Contact: Jin Xuehui

摘要:

为明确黑龙江省粳稻品种中稻瘟病抗性基因的类型、评价品种及抗瘟基因利用价值,利用8个已克隆主效抗性基因PitaPiaPiz-tPibPikmPi9PiiPid3的特异性分子标记,结合402个黑龙江省各稻区的菌株接种供试品种的抗性表型,对20个黑龙江省粳稻品种的抗性基因型及抗病性进行分析。结果显示,Pia检出率最高,20个粳稻品种均检测到该基因,其次是PitaPiz-t,检出率为80%;PiaPitaPiz-tPikmPi9在不同生态型品种育种中得到了较为广泛的应用,PibPiiPid3在不同生态类型品种间分布存在差异,仅在第1积温带的品种中发挥较好作用;唯一携带Pid3且具有Pita+Pia+Piz-t+Pib+Pii+Pid3基因型的龙洋16抗性表现最好,抗性频率高达93%;携带Pita+Pia+Piz-t基因组合的品种均表现出较好的抗病性,对黑龙江省粳稻品种的抗瘟贡献较大。揭示了黑龙江省20个粳稻品种的稻瘟病主效抗性基因类型及其对稻瘟病抗性的贡献,为寒地水稻种质资源的抗病性筛选和广谱抗病基因的利用提供重要依据。

关键词: 稻瘟病, 抗性基因, 抗性评价

Abstract:

In order to clarify the patterns of rice blast resistance genes in the japonica rice varieties in Heilongjiang province and evaluate the utilization value of varieties and the blast resistance genes, this study used specific molecular markers of eight cloned major resistance genes of Pita, Pia, Piz-t, Pib, Pikm, Pi9, Pii, and Pid3, combined with the resistance phenotypes identification of tested varieties inoculated with 402 strains from various rice regions in Heilongjiang, the genotypes and disease resistance of 20 japonica rice varieties in Heilongjiang were analyzed. The results showed that the detection frequency of Pia was the highest, the gene was detected in 20 japonica rice varieties, followed by Pita and Piz-t with detection frequency of 80%; Pia, Pita, Piz-t, Pikm and Pi9 were widely used in the breeding of different ecotype varieties, Pib, Pii, and Pid3 had different distributions among different ecotype varieties, and they only played a good role in varieties suitable for planting in the first accumulated temperature zone; Longyang 16, the only variety carrying Pid3 and having Pita+Pia+Piz-t+Pib+Pii+Pid3 genotype showed the best resistance, and the resistance frequency was 93%. The varieties carrying Pita+Pia+Piz-t gene combinations showed the good disease resistance and made a significant contribution to the blast resistance of japonica rice varieties in Heilongjiang. This study revealed the major blast resistance genetypes of 20 japonica rice varieties in Heilongjiang and their contribution to rice blast resistance, which provided an important basis for disease resistance screening of rice germplasm resources in cold regions and utilization of broad-spectrum resistance genes.

Key words: Rice blast, Resistance gene, Resistance evaluation

图1

参试菌株采集地点示意图

表1

特异性分子标记的引物信息

抗性基因
Resistance gene
引物
Primer
引物序列
Primer sequence (5'-3')
片段大小
Fragment size (bp)

Enzyme
参考文献
Reference
Pita YL155-F AGCAGGTTATAAGCTAGGCC 1042(R) [7-9]
YL87-R CTACCAACAAGTTCATCAAA
YL183-F AGCAGGTTATAAGCTAGCTAT 1042(S)
YL87-R CTACCAACAAGTTCATCAAA
Pia Pia-F GTCACGACGACCATCCAGTCAGTAG 2196(R) [10]
Pia-R AGGTAACAGGGAGTGTAGGAAATCA
Piz-t Piz-t-F1 CTTCTATGCAGTCGTGAGATTGGTT 206(R) [10]
Piz-t-R1 ATGCTACGATGGAAATCAACACAAT
Piz-t-F2 TAAAAGATTTCTTGATTTCACTCGG 3154(R)
Piz-t-R2 ACCTGATGGCTAATACTGAACAAGA
Piz-t-F3 GGGCGATGATTTCAACTCACTTTTC 136(R)
Piz-t-R3 GATCATCATGTCCCTCCGAGTCAGA
Pib Pibdom-F GAACAATGCCCAAACTTGAGA 365(R) [11-13]
Pibdom-R GGGTCCACATGTCAGTGAGC
Lys145-F TCGGTGCCTCGGTAGTCAGT 803(S)
Lys145-R GGGAAGCGGATCCTAGGTCT
Pikm Ckm1-F TGAGCTCAAGGCAAGAGTTGAGGA 174 (R)/213 (S) [14-15]
Ckm1-R TGTTCCAGCAACTCGATGAG
Ckm2-F CAGTAGCTGTGTCTCAGAACTATG 290 (R)/332 (S)
Ckm2-R AAGGTACCTCTTTTCGGCCAG
Pi9 Pi9-F GCTGTGCTCCAAATGAGGAT 291 (R)/397(S) [16]
Pi9-R GCGATCTCACATCCTTTGCT
Pii Pii-4SNP-F TCCAATGCTTCTGAAAGGTAGC 353/240+113 Pvu [17]
Pii-4SNP-R TGGAAACATGAACCCATATCC
Pid3 Pid3-F TACTACTCATGGAAGCTAGTTCTC 658 BamHⅠ [18]
Pid3-R ACGTCACAAATCATTCGCTC

表2

供试水稻品种的抗性频率及抗性评价

抗性评价(占比)
Resistance evaluation (percentage)
品种
Variety
抗性频率
Resistance
frequency (%)
R (35%) 龙洋16 93.0
龙洋1号 91.0
龙粳40 90.9
北稻4号 89.0
垦稻23 86.3
龙粳42 85.6
北稻3号 81.6
MR (60%) 松粳20 79.6
龙粳43 78.6
绥粳4号 76.6
龙粳31 74.9
龙庆稻3号 74.2
松粳3号 69.9
垦稻12 68.9
稻花香2号 66.2
龙粳21 64.9
龙粳29 63.5
龙粳26 61.5
松粳15 60.9
S (5%) 空育131 36.3

图2

部分水稻品种中稻瘟病抗性基因的扩增产物 M-DL 2000。1-各基因的抗病对照;2-感病对照(LTH);3-龙粳21;4-龙粳26;5-龙粳29;6-龙粳31;7-龙粳40;8-龙粳42;9-龙粳43;10-垦稻12;11-空育131;12-绥粳4号

表3

供试水稻品种抗性基因分子标记检测结果

编号Number 品种
Variety
抗性基因Resistance gene 基因型
Genotype
Pita Pia Piz-t Pib Pikm Pi9 Pii Pid3
1 龙洋1号 + + + - + - - - Pita+Pia+Piz-t+Pikm
2 龙洋16 + + + + - - + + Pita+Pia+Piz-t+Pib+Pii+Pid3
3 松粳3号 + + + - - + + - Pita+Pia+Piz-t+Pi9+Pii
4 松粳15 - + + + + + - - Pia+Piz-t+Pib+Pikm+Pi9
5 松粳20 + + + + + + + - Pita+Pia+Piz-t+Pib+Pikm+Pi9+Pii
6 稻花香2号 + + - - - + + - Pita+Pia+Pi9+Pii
7 龙粳21 - + + - + + - - Pia+Piz-t+Pikm+Pi9
8 龙粳42 + + + - - - - - Pita+Pia+Piz-t
9 北稻3号 + + + - + + + - Pita+Pia+Piz-t+Pikm+Pi9+Pii
10 北稻4号 + + + + + + - - Pita+Pia+Piz-t+Pib+Pikm+Pi9
11 绥粳4号 + + - - - + - - Pita+Pia+Pi9
12 垦稻12 + + + - + - - - Pita+Pia+Piz-t+Pikm
13 垦稻23 + + + + - - - - Pita+Pia+Piz-t+Pib
14 龙粳26 - + + - + - - - Pia+Piz-t+Pikm
15 龙粳29 + + - - - + + - Pita+Pia+Pi9+Pii
16 龙粳31 + + + - + - - - Pita+Pia+Piz-t+Pikm
17 龙粳40 + + + - - - - - Pita+Pia+Piz-t
18 龙粳43 + + + + - + + - Pita+Pia+Piz-t+Pib+Pi9+Pii
19 龙庆稻3号 + + + - - + - - Pita+Pia+Piz-t+Pi9
20 空育131 - + - - + + - - Pia+Pikm+Pi9
检出率Detection frequency (%) 80 100 80 30 50 60 35 5

图3

抗性基因在不同生态型粳稻品种中的分布

表4

供试粳稻品种所携带目标基因数及所占比率

目标基因数
Number of
target genes
基因型数
Number of genotypes
品种数量
Number of varieties
比率
Ratio
(%)
3 4 5 25.0
4 5 8 40.0
5 2 2 10.0
6 4 4 20.0
7 1 1 5.0

表5

不同抗性基因类型的稻瘟病抗性表现

基因型
Genotype
抗性表现
Resistance
reaction
品种数量
Number of
varieties
Pita+Pia+Piz-t+Pib+Pii+Pid3 R 1
Pita+Pia+Piz-t+Pikm R 1
Pita+Pia+Piz-t R 2
Pita+Pia+Piz-t+Pib+Pikm+Pi9 R 1
Pita+Pia+Piz-t+Pib R 1
Pita+Pia+Piz-t+Pikm+Pi9+Pii R 1
Pita+Pia+Piz-t+Pib+Pikm+Pi9+Pii MR 1
Pita+Pia+Piz-t+Pib+Pi9+Pii MR 1
Pita+Pia+Piz-t+Pikm MR 2
Pita+Pia+Piz-t+Pi9 MR 1
Pita+Pia+Piz-t+Pi9+Pii MR 1
Pita+Pia+Pi9+Pii MR 2
Pita+Pia+Pi9 MR 1
Pia+Piz-t+Pikm+Pi9 MR 1
Pia+Piz-t+Pikm MR 1
Pia+Piz-t+Pib+Pikm+Pi9 MR 1
Pia+Pikm+Pi9 S 1
[1] Flor H H. Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971,9(1):275-296.
[2] Liu J, Wang X, Mitchell T K, et al. Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Molecular Plant Pathology, 2010,11(3):419-427.
[3] Sharma T R, Rai A K, Gupta S K, et al. Rice blast management through host-plant resistance:retrospect and prospects. Agricultural research, 2012,1(1):37-52.
[4] 程芳艳. 黑龙江省粳稻亲缘关系和稻瘟病抗性解析. 沈阳:沈阳农业大学, 2016.
[5] 辛威. 寒地粳稻种质资源稻瘟病抗性鉴定及基因定位. 哈尔滨:东北农业大学, 2017.
[6] 相亚超, 王丽丽, 徐凡, 等. 抗稻瘟病基因在黑龙江水稻资源中的分布. 分子植物育种, 2018,16(23):7705-7717.
[7] Wang Z, Jia Y, Rutger J N, et al. Rapid survey for presence of a blast resistance gene Pi-ta in rice cultivars using the dominant DNA markers derived from portions of the Pi-ta gene. Plant Breeding, 2007,126(1):36-42.
[8] Jia Y, Wang Z, Fjellstrom R G, et al. Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the United States. Phytopathology, 2004,94(3):296-301.
[9] Jia Y, Wang Z, Singh P. Development of dominant rice blast Pi-ta resistance gene markers. Crop Science, 2002,42(6):2145-2149.
[10] 于连鹏. 黑龙江省主栽水稻品种PitaPiaPiz-t抗瘟基因检测和抗性评价. 大庆:黑龙江八一农垦大学, 2017.
[11] 时克, 雷财林, 程治军, 等. 稻瘟病抗性基因PitaPib在我国水稻主栽品种中的分布. 植物遗传资源学报, 2009,10(1):21-26.
[12] 刘洋, 徐培洲, 张红宇, 等. 水稻抗稻瘟病Pib基因的分子标记辅助选择与应用. 中国农业科学, 2008,41(1):9-14.
[13] Fjellstrom R G, Conawaybormans C A, Mcclung A M, et al. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Science, 2004,44(5):1790-1798.
[14] 江川, 朱业宝, 张丹, 等. 福建漳浦野生稻稻瘟病抗性鉴定评价和抗性基因检测. 核农学报, 2019,33(10):1883-1892.
[15] Costanzo S, Jia Y. Sequence variation at the rice blast resistance gene Pi-km locus:Implications for the development of allele specific markers. Plant Science, 2010,178(6):523-530.
[16] 高利军, 高汉亮, 颜群, 等. 4个抗稻瘟病基因分子标记的建立及在水稻亲本中的分布. 杂交水稻, 2010,25(S1):294-298.
[17] Takagi H, Uemura A, Yaegashi H, et al. MutMap-Gap:whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytologist, 2013,200(1):276-283.
[18] Shang J, Tao Y, Chen X, et al. Identification of a new rice blast resistance gene,Pid3,by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 2009,182(4):1303-1311.
[19] 连兆煌. 农作物无土栽培技术(三)——水培技术. 广东农业科学, 1986(3):46-48,44.
[20] 周弋力. 黑龙江省水稻主栽品种抗瘟性评价及稻瘟病菌无毒基因分析. 大庆:黑龙江八一农垦大学, 2019.
[21] 孟峰, 张亚玲, 靳学慧, 等. 黑龙江省稻瘟病菌无毒基因AVR-PibAVR-PikAvrPiz-t的检测与分析. 中国农业科学, 2019,52(23):4262-4273.
[22] 全国稻瘟病菌生理小种联合试验组. 我国稻瘟病菌生理小种研究. 植物病理学报, 1980,10(2):71-82.
[23] 阮宏椿, 杨秀娟, 陈双龙, 等. 福建省水稻新品种对稻瘟病菌的抗性鉴定与评价. 福建农业学报, 2006,21(4):304-307.
[24] 李莹. 抗稻瘟病早粳稻空育131(Pid2/Pid3)的培育. 哈尔滨:黑龙江大学, 2015.
[25] 徐未未, 王兴, 黄永相, 等. 水稻抗稻瘟病基因的分子标记与标记辅助育种研究进展. 江苏农业学报, 2013,29(4):898-906.
[1] 缪建锟, 徐晗, 杨皓, 闫晗, 褚晋, 白元俊, 董海. 辽宁省水稻主栽品种稻曲病抗性鉴定与评价[J]. 作物杂志, 2020, (6): 38–46
[2] 孟峰, 张亚玲, 靳学慧. 黑龙江省稻瘟病菌无毒基因的检测[J]. 作物杂志, 2020, (3): 197–200
[3] 张晓玉,张亚玲,靳学慧,闫天雨,赵泽. 稻瘟病菌杂交后代致病性遗传分析[J]. 作物杂志, 2020, (2): 182–187
[4] 周弋力,张亚玲,赵宏森,靳学慧. 黑龙江省主栽水稻品种抗稻瘟病基因的分子检测与分析[J]. 作物杂志, 2019, (3): 172–177
[5] 王洁,曾波,雷财林,赵志超,王久林,程治军. 北方国家水稻区域试验近15年参试品种分析[J]. 作物杂志, 2018, (1): 71–76
[6] 林晓敏, 李斌, 谭晓荣, 等. 大豆胞囊线虫抗性机制的研究进展[J]. 作物杂志, 2015, (5): 11–17
[7] 马军韬, 张国民, 辛爱华, 等. 以稻瘟病抗性基因分析为基础的水稻品种抗性布局研究[J]. 作物杂志, 2015, (1): 151–155
[8] 雷财林, 王久林, 程治军, 等. 水稻抗稻瘟病单基因鉴别体系研究的概况与展望[J]. 作物杂志, 2014, (2): 5–8
[9] 罗生香, 王倩, 张帆, 等. 水稻品种空育131的稻瘟菌致病菌株的遗传多样性分析[J]. 作物杂志, 2013, (4): 133–136
[10] 宋微, 邹德堂, 王敬国, 刘化龙, 郭丽颖. 黑龙江省水稻品种抗稻瘟病基因Pi-5的分子鉴定[J]. 作物杂志, 2012, (5): 17–21
[11] 边嘉宾, 施利利, 诸隈正裕, 楠谷彰人. 米糠栽培法对水稻病害和杂草发生的影响研究[J]. 作物杂志, 2012, (5): 91–96
[12] 张云江. 寒地早熟优质抗病水稻品种龙粳27及配套栽培技术[J]. 作物杂志, 2011, (4): 104–105
[13] 杨福, 梁正伟, 王志春. 水稻新品种东稻4号的选育与栽培技术要点[J]. 作物杂志, 2011, (2): 111–111
[14] 杨一龙, 程治军, 李伟, 马建, 马进, 王久林, 雷财林. 水稻稻瘟病部分抗性基因的定位与克隆研究进展[J]. 作物杂志, 2010, (6): 10–14
[15] 后明志, 龙步清, 苏道志, 等. 水稻新品种博优283的选育及栽培技术要点[J]. 作物杂志, 2009, (4): 107–107
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!