作物杂志,2022, 第1期: 116–123 doi: 10.16035/j.issn.1001-7283.2022.01.017

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

秸秆全量还田下施用过氧化钙对南方双季稻产量和稻田温室气体排放的影响

何宇轩1(), 李雅娟1, 周明卓1, 眭锋1, 吕伟生2, 张俊3, 曾勇军1, 黄山1()   

  1. 1教育部和江西省作物生理生态与遗传育种重点实验室/江西农业大学农学院,330045,江西南昌
    2江西省红壤研究所/江西省红壤耕地保育重点实验室/农业农村部江西耕地保育科学观测实验站,331717,江西南昌
    3中国农业科学院作物科学研究所,100081,北京
  • 收稿日期:2021-01-21 修回日期:2021-04-21 出版日期:2022-02-15 发布日期:2022-02-16
  • 通讯作者: 黄山
  • 作者简介:何宇轩,研究方向为作物栽培学与耕作学,E-mail: isheyuxuan@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0300903);大学生创新创业训练计划项目(S202010410004)

Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System

He Yuxuan1(), Li Yajuan1, Zhou Mingzhuo1, Sui Feng1, Lü Weisheng2, Zhang Jun3, Zeng Yongjun1, Huang Shan1()   

  1. 1Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Ministry of Education and Jiangxi/College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
    2Jiangxi Institute of Red Soil/Jiangxi Key Laboratory of Red Soil Arable Land Conservation/Scientific Observational and Experimental Station of Arable Land Conservation in Jiangxi, Ministry of Agriculture and Rural Affairs, Nanchang 331717, Jiangxi, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-01-21 Revised:2021-04-21 Online:2022-02-15 Published:2022-02-16
  • Contact: Huang Shan

摘要:

为探明秸秆全量还田条件下施用过氧化钙(CaO2)对南方双季水稻产量和稻田温室气体排放的影响,设置不施CaO2(CK)和早稻旋耕前一次性施用CaO2 2个处理,采用静态暗箱–气相色谱法监测稻田温室气体排放,以明确秸秆全量还田下施用CaO2对双季稻产量、稻田温室气体排放、综合温室效应(GWP)和温室气体排放强度(GHGI)的影响。结果表明,与CK相比,施用CaO2显著增加了2018和2019年晚稻产量,增幅分别为3.44%和2.65%,但对早稻产量无显著影响。施用CaO2显著降低了早稻季CH4累积排放量、GWP和GHGI,降幅分别为14.73%、14.74%和15.09%,但是对N2O累积排放量无显著影响。施用CaO2对晚稻季CH4和N2O排放均无显著影响。与CK相比,施用CaO2显著增加了2018和2019年的周年产量,增幅分别为1.93%和2.58%;但对CH4和N2O累积排放量、GWP及GHGI均无显著影响。因此,施用CaO2有助于协同实现双季稻增产和稻田温室气体减排。

关键词: 双季稻, 过氧化钙, 产量, 温室气体排放

Abstract:

In order to explore the effects of applying calcium peroxide (CaO2) on rice yield and greenhouse gas emissions in southern double-cropping rice under the condition of returning full straw to the field, this experiment set no CaO2 (CK) and a one-time application of CaO2 before rotary tillage of early rice. In this process, static dark box-gas chromatography was used to monitor greenhouse gas emissions from rice fields to determine the effects of CaO2 on double-cropping rice yield, greenhouse gas emissions, comprehensive greenhouse effect (GWP) and greenhouse gas emission intensity (GHGI). The results showed that compared with CK, the application of CaO2 significantly increased the yield of late rice in 2018 and 2019 by 3.44% and 2.65%, respectively, but had no significant effect on the yield of early rice. The application of CaO2 significantly reduced the cumulative emission of CH4, GWP and GHGI in the early rice season by 14.73%, 14.74% and 15.09%, respectively, but had no significant effect on the cumulative emission of N2O. The application of CaO2 had no significant effect on CH4 and N2O emissions in late rice season. Compared with CK, the application of CaO2 significantly increased the annual yield in 2018 and 2019 by 1.93% and 2.58% respectively; however, there was no significant effect on the annual cumulative emissions of CH4 and N2O, GWP and GHGI. Therefore, the application of CaO2 could help to achieve a synergistic increase in double-cropping rice yield and greenhouse gas emission reduction in rice fields.

Key words: Double rice, Calcium peroxide, Yield, Greenhouse gas emission

图1

稻田水层深度变化

图2

田间气温变化

表1

秸秆全量还田下施用CaO2对双季水稻产量及其构成因素的影响

年份
Year
季别
Season
处理
Treatment
有效穗数
Effective panicles
(×104/hm2)
穗粒数
Grains per
panicle
千粒重
1000-grain
weight (g)
结实率
Seed-setting
rate (%)
产量
Yield
(kg/hm2)
2018 早稻 CK 301.51±8.14a 131.45±0.98a 29.52±0.27a 90.02±1.23a 7871.79±200.20a
Early rice CaO2 296.92±1.54a 139.69±5.51a 29.99±0.19a 89.53±1.07a 7892.31±256.05a
晚稻 CK 260.25±1.25b 183.68±2.30a 23.08±0.31a 86.53±1.37a 9092.04±206.64b
Late rice CaO2 265.25±1.09a 170.98±5.25a 22.57±0.39a 85.46±2.73a 9404.70±120.61a
2019 早稻 CK 299.49±1.36a 143.81±2.66a 22.61±0.21a 88.41±1.39a 7312.82±138.75a
Early rice CaO2 308.92±1.44a 136.71±1.27a 22.50±0.25a 87.66±1.29a 7384.62±146.76a
晚稻 CK 279.92±3.41b 187.38±4.76a 24.12±1.73a 85.23±0.04a 8962.50±132.29b
Late rice CaO2 286.46±6.45a 186.07±5.05a 23.78±1.12a 84.88±0.03a 9200.00±153.60a

图3

秸秆全量还田下施用CaO2对双季稻周年产量的影响 不同小写字母表示处理间差异显著(P > 0.05),下同

图4

秸秆全量还田下施用CaO2对双季稻田CH4排放通量的影响

图5

秸秆全量还田下施用CaO2对双季稻田N2O排放通量的影响

表2

秸秆全量还田下施CaO2对双季稻田CH4和N2O累积排放量、GWP和GHGI的影响

季别
Season
处理
Treatment
CH4累积排放量
Cumulative emission of CH4 (kg/hm2)
N2O累积排放量
Cumulative emission of N2O (kg/hm2)
GWP
(kg/hm2)
GHGI
(kg/kg)
早稻 CK 167.77±3.71a 0.17±0.09a 4194.30±92.64a 0.53±0.02a
Early rice CaO2 143.05±3.81b 0.19±0.07a 3576.19±95.36b 0.45±0.01b
晚稻 CK 268.51±45.30a 0.17±0.12a 6763.17±1156.23a 0.74±0.12a
Late rice CaO2 286.62±19.45a 0.24±0.03a 7237.08±729.98a 0.77±0.08a

表3

秸秆全量还田下施CaO2对试验周期内双季稻田CH4和N2O累积排放总量、GWP和GHGI的影响

处理
Treatment
CH4累积排放总量
Total cumulative emission of CH4 (kg/hm2)
N2O累积排放总量
Total cumulative emission of N2O (kg/hm2)
GWP
(kg/hm2)
GHGI
(kg/kg)
CK 436.28±47.53a 0.34±0.08a 11 008.19±1184.61a 0.65±0.06a
CaO2 429.66±25.65a 0.43±0.05a 10 869.26±643.08a 0.63±0.05a

图6

秸秆全量还田下施用CaO2对双季稻田土壤pH的影响

[1] Liu S L, Pu C, Ren Y X, et al. Yield variation of double-rice in response to climate change in Southern China. European Journal of Agronomy, 2016, 81:161-168.
doi: 10.1016/j.eja.2016.09.014
[2] 廖萍, 眭锋, 汤军, 等. 施用生物炭对双季稻田综合温室效应和温室气体排放强度的影响. 核农学报, 2018, 32(9):1821-1830.
[3] 陈云峰, 夏贤格, 杨利, 等. 秸秆还田是秸秆资源化利用的现实途径. 中国土壤与肥料, 2020(6):299-307.
[4] 伍玉鹏, 彭其安, Muhammad S, 等. 秸秆还田对土壤微生物影响的研究进展. 中国农学通报, 2014, 30(29):175-183.
[5] 李昊昱, 孟兆良, 庞党伟, 等. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响. 作物学报, 2019, 45(6):893-903.
doi: 10.3724/SP.J.1006.2019.81078
[6] 马小婷, 隋玉柱, 朱振林, 等. 秸秆还田对农田土壤碳库和温室气体排放的影响研究进展. 江苏农业科学, 2017, 45(6):14-20.
[7] Cimélio B, Falbernide S C, Gabriel M P, et al. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a Humid Subtropical climate. Field Crops Research, 2014, 162:60-69.
doi: 10.1016/j.fcr.2014.03.015
[8] 朱安繁, 邵华, 张龙华. 江西省耕地土壤酸化现状与改良措施. 江西农业学报, 2014, 26(4):43-45.
[9] 徐仁扣. 土壤酸化及其调控研究进展. 土壤, 2015, 47(2):238-244.
[10] Zhang T, Chen H, Ruan H. Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 2018, 12:1817-1825.
doi: 10.1038/s41396-018-0096-y
[11] 王玲玲. 缓释过氧化钙对潜育稻田的改良效果研究. 长沙:湖南大学, 2018.
[12] 芮绍云. 改良剂对旱地红壤温室气体排放及微生物的影响. 南昌:南昌工程学院, 2018.
[13] 翟永青, 丁士文, 姚子华, 等. 过氧化钙在水稻直播中的应用试验研究. 河北大学学报(自然科学版), 2002, 22(4):360-362.
[14] 杨进, 郦和生, 王岽, 等. 过氧化钙降解有机污染物研究进展. 化工环保, 41(2):140-145.
[15] Carberry J B, Yang S Y. Enhancement of PCB congener biodegradation by pre-oxidation with Fenton's reagent. Water Science and Technology, 1994, 30(7):105-113.
[16] 张静, 周雪飞, 钱雅洁. 过氧化钙在环境修复应用中的研究进展. 环境化学, 2014, 33(2):321-326.
[17] 逯非, 王效科, 韩冰, 等. 稻田秸秆还田:土壤固碳与甲烷增排. 应用生态学报, 2010, 21(1):99-108.
[18] Xia L L, Wang S W, Yan X Y. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agriculture Ecosystems and Environment, 2014, 197:118-127.
doi: 10.1016/j.agee.2014.08.001
[19] Frankenberger W T, Jr. Factors affecting the fate of urea peroxide added to soil. Bulletin of Environmental Contamination and Toxicology, 1997, 59(1):50-57.
pmid: 9184040
[20] Xu Y Z, Nie L X, Buresh R J, et al. Agronomic performance of late-season rice under different tillage,straw,and nitrogen management. Field Crops Research, 2009, 115(1):79-84.
doi: 10.1016/j.fcr.2009.10.005
[21] 成臣, 杨秀霞, 汪建军, 等. 秸秆还田条件下灌溉方式对双季稻产量及农田温室气体排放的影响. 农业环境科学学报, 2018, 37(1):186-195.
[22] Stocker T F, Qin D, Plattner G K, et al. IPCC,2013:Climate change 2013:the physical science basis. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change. UK: Cambridge University Press,1535.
[23] 曾勇军, 周庆红, 吕伟生, 等. 土壤酸化对双季早、晚稻产量的影响. 作物学报, 2014, 40(5):899-907.
[24] 袁颖红, 李丽, 芮绍云, 等. 生物质炭及过氧化钙对旱地红壤CH4,CO2和N2O排放的影响. 长江流域资源与环境, 2019, 28(3):152-160.
[25] 王丹英, 韩勃, 章秀福, 等. 水稻根际含氧量对根系生长的影响. 作物学报, 2008, 34(5):803-808.
[26] Liao P, Huang S, Gestel N V, et al. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Research, 2018, 216:217-224.
doi: 10.1016/j.fcr.2017.11.026
[27] 廖萍, 刘磊, 何宇轩, 等. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应. 作物学报, 2020, 46(1):84-92.
[28] 单玉华, 蔡祖聪, 韩勇, 等. 淹水土壤有机酸积累与秸秆碳氮比及氮供应的关系. 土壤学报, 2006(6):941-947.
[29] 曾研华, 吴建富, 曾勇军, 等. 机收稻草全量还田减施化肥对双季晚稻养分吸收利用及产量的影响. 作物学报, 2018, 44(3):454-462.
[30] 胡继杰, 朱练峰, 胡志华, 等. 土壤增氧方式对其氮素转化和水稻氮素利用及产量的影响. 农业工程学报, 2017, 33(1):167-174.
[31] Wang H F, Zhao Y S, Li T Y, et al. Properties of calcium peroxide for release of hydrogen peroxide and oxygen:a kinetics study. Chemical Engineering Journal, 2016, 303:450-457.
doi: 10.1016/j.cej.2016.05.123
[32] Lehmann J, Joseph S. Biochar for environmental management:science and technology. Forest Policy and Economics, 2009, 11(7):15801-15811.
[33] 余喜初, 李大明, 黄庆海, 等. 过氧化钙及硅钙肥改良潜育化稻田土壤的效果研究. 植物营养与肥料学报, 2015, 21(1):138-146.
[34] Spokas K A, Reicosky D C. Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science, 2009, 3(1):179-193.
[35] 王正, 胡磊, 朱波. 三峡水库消落带优势草本植物残体淹水后温室气体排放特征. 长江流域资源与环境, 2020, 29(9):1965-1974.
[36] 张冉, 赵鑫, 濮超, 等. 中国农田秸秆还田土壤N2O排放及其影响因素的Meta分析. 农业工程学报, 2015, 31(22):1-6.
[37] 冯珺珩, 黄金凤, 刘天奇, 等. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响. 作物学报, 2019, 45(8):1250-1259.
doi: 10.3724/SP.J.1006.2019.82051
[38] 谢义琴, 张建峰, 姜慧敏, 等. 不同施肥措施对稻田土壤温室气体排放的影响. 农业环境科学学报, 2015, 34(3):578-584.
[39] Siciliano S D, Ma W K, Ferguson S, et al. Nitrifier dominance of Arctic soil nitrous oxide emissions arises due to fungal competition with denitrifiers for nitrate. Soil Biology and Biochemistry, 2009, 41(6):1104-1110.
doi: 10.1016/j.soilbio.2009.02.024
[40] Lai R. Soil carbon management and climate change. Carbon Management, 2013, 4(4):439-462.
doi: 10.4155/cmt.13.31
[41] 潘亚男, 王娅静, 曹文超, 等. 土壤pH影响氧化亚氮(N2O)排放的研究进展. 安徽农学通报, 2017, 23(15):19-24,99.
[1] 石雄高, 裴雪霞, 党建友, 张定一. 小麦微喷(滴)灌水肥一体化高产优质高效生态栽培研究进展[J]. 作物杂志, 2022, (1): 1–10
[2] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[3] 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137–141
[4] 刘子刚, 卢海博, 武敏桦, 赵海超, 魏东, 黄智鸿. 化控剂玉黄金对春玉米抗倒伏性状及产量的影响[J]. 作物杂志, 2022, (1): 142–146
[5] 靳丹, 冯乃杰, 郑殿峰, 王诗雅. 5-氨基乙酰丙酸对绿豆碳代谢及产量的影响[J]. 作物杂志, 2022, (1): 147–153
[6] 谢慧敏, 吴可, 刘文奇, 韦国良, 陆献, 李壮林, 韦善清, 梁和, 江立庚. 海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响[J]. 作物杂志, 2022, (1): 161–166
[7] 柏军兵, 王艳杰, 王德梅, 杨玉双, 王玉娇, 郭丹丹, 刘哲文, 常旭虹, 石书兵, 赵广才. 强筋小麦产量和品质对不同土壤条件及施氮水平的响应[J]. 作物杂志, 2022, (1): 167–173
[8] 杜昕, 李博, 毛鲁枭, 陈伟, 张玉先, 曹亮. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响[J]. 作物杂志, 2022, (1): 174–178
[9] 王庆彬, 卢洁春, 彭春娥, 孟慧, 刘治国, 王洪凤, 张民. 不同氮量处理配施宛氏拟青霉提取物对小白菜生长和氮素吸收的影响[J]. 作物杂志, 2022, (1): 190–195
[10] 杨志楠, 黄金文, 韩凡香, 李亚伟, 马建涛, 柴守玺, 程宏波, 杨德龙, 常磊. 秸秆带状覆盖对西北雨养区马铃薯农田土壤温度及产量的影响[J]. 作物杂志, 2022, (1): 196–204
[11] 李润卿, 申勇, 朱宽宇, 王志琴, 杨建昌. 施氮量对超级稻南粳9108产量、淀粉RVA谱特征值和理化特性的影响[J]. 作物杂志, 2022, (1): 205–212
[12] 冯素芬, 刘元剑, 许蕊淇, 张薇. 云南省近年审定鲜食玉米品种的主要性状分析[J]. 作物杂志, 2022, (1): 220–226
[13] 张胜全, 叶志杰, 任立平, 高新欢, 王拯, 杨永利, 穆磊, 董艳华, 陈兆波. “十五”以来我国杂交小麦审定品种分析[J]. 作物杂志, 2022, (1): 38–43
[14] 宋全昊, 金艳, 宋佳静, 白冬, 赵立尚, 陈杰, 朱统泉. 人工合成六倍体小麦在黄淮麦区育种中的利用性评价[J]. 作物杂志, 2022, (1): 56–64
[15] 唐刚, 廖萍, 眭锋, 吕伟生, 张俊, 曾勇军, 黄山. 秸秆全量还田下晚稻季翻耕对双季稻田温室气体排放和产量的影响[J]. 作物杂志, 2021, (6): 101–107
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!