作物杂志,2022, 第1期: 196–204 doi: 10.16035/j.issn.1001-7283.2022.01.030

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

秸秆带状覆盖对西北雨养区马铃薯农田土壤温度及产量的影响

杨志楠1(), 黄金文1, 韩凡香2, 李亚伟1, 马建涛1, 柴守玺1, 程宏波3, 杨德龙3, 常磊1()   

  1. 1甘肃农业大学农学院/甘肃省干旱生境作物学重点实验室,730070,甘肃兰州
    2兰州城市学院地理与环境工程学院,730070,甘肃兰州
    3甘肃农业大学生命科学技术学院,730070,甘肃兰州
  • 收稿日期:2021-01-27 修回日期:2021-04-23 出版日期:2022-02-15 发布日期:2022-02-16
  • 通讯作者: 常磊
  • 作者简介:杨志楠,主要从事作物栽培生态生理研究,E-mail: 1945955080@qq.com
  • 基金资助:
    甘肃农业大学科技创新基金—青年导师扶持基金(GSAU-QDFC-2020-04);国家自然科学基金(31760373);国家自然科学基金(31960239)

Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China

Yang Zhinan1(), Huang Jinwen1, Han Fanxiang2, Li Yawei1, Ma Jiantao1, Chai Shouxi1, Cheng Hongbo3, Yang Delong3, Chang Lei1()   

  1. 1College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, China
    2School of Geography and Environment, Lanzhou City University, Lanzhou 730070, Gansu, China
    3College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2021-01-27 Revised:2021-04-23 Online:2022-02-15 Published:2022-02-16
  • Contact: Chang Lei

摘要:

为探明秸秆带状覆盖和地膜覆盖对马铃薯农田土壤热量传递和产量的影响,试验于2018-2019年进行,设置不同覆盖材料(地膜、秸秆)、覆盖时期(秋、春)、露地(CK)5个处理,研究不同覆盖对马铃薯农田土壤热量传递特性及产量的影响。结果表明,各处理在不同生育期和不同土层温度存在显著差异。与CK相比,2个生长季秸秆带状覆盖显著降低0~25cm土层土壤温度0.6℃~0.9℃,降温幅度为秋覆盖大于春覆盖,地膜覆盖提高土壤温度0.3℃~0.7℃。不同时期相比,地表覆盖存在增温和降温的双重效应,降温效应秸秆带状覆盖大于地膜覆盖,而增温效应地膜覆盖大于秸秆带状覆盖。地温日变化随气温的变化存在明显的滞后效应,覆盖显著抑制地温波动。覆盖具有“双抑制效应”,在低温时段抑制了土壤热量向大气的散失,高温时段抑制了地表对太阳辐射热量的吸收,且秸秆覆盖优于地膜覆盖,秋覆盖优于春覆盖,与CK相比,2个生长季秸秆覆盖温度梯度降低7.3~7.8℃/m,地膜覆盖降低3.4~6.3℃/m。秸秆带状覆盖增产14.7%,地膜覆盖增产25.3%,处理间单薯重的差异是引起产量差异的主要因素。因此,秸秆带状覆盖在西北雨养区马铃薯生产中具有应用推广价值。

关键词: 秸秆带状覆盖, 地膜覆盖, 土壤温度, 土壤温度梯度, 产量, 马铃薯

Abstract:

To find out the effects of straw strip mulching and film mulching on the soil heat transfer and yield of potato farmland, experiments were conducted from 2018 to 2019. Five treatments were set to study the effects of different mulching on the soil heat transfer characteristics and yield of potato farmland. The five treatments were mulching materials (mulching film, straw), mulching period (autumn, spring), and uncovered open fields (CK). The results showed that there were significant differences in the temperature under each treatment in different growth periods and different soil layers. Compared with CK, the straw mulching in the two growing seasons significantly reduced the soil temperature in 0-25cm soil layer by 0.6℃-0.9℃, and the fall of temperature with autumn stalk mulching was greater than that with spring stalk mulching. The film mulching increased the soil temperature by 0.3℃-0.7℃. In different periods, the surface cover had a dual effect of increasing temperature and decreasing temperature. The cooling effect of straw strip mulching was greater than that of plastic film mulching, and the heating effect of plastic film mulching was greater than that of straw mulching. The diurnal variation of ground temperature had an obvious hysteresis effect with the change of temperature, and the coverage significantly suppressed ground temperature fluctuations. The mulching had a "dual suppression effect" as it inhibited the loss of soil heat to the atmosphere during low-temperature periods, and inhibited the absorption of solar radiation heat by the surface during high-temperature periods. The straw mulching was better than the plastic mulching, and the autumn mulching was better than the spring mulching. Compared with the CK, in the two growing seasons, the temperature gradient under the straw mulching decreased by 7.3-7.8℃/m and under the film mulching it decreased by 3.4-6.3℃/m. The straw strip mulching increased the yield by 14.7%, and the film mulching increased the yield by 25.3%. The difference in the single potato weight between the treatments was the main factor causing the difference in yield. Therefore, the straw strip mulching had application and promotion value in potato production in the northwest rainfed area.

Key words: Straw strip mulching, Film mulching, Soil temperature, Soil temperature gradient, Yield, Potato

图1

2018-2019年试验点马铃薯全生育期降水分布

表1

试验设计

处理Treatment 耕作措施Tillage measure
地膜秋覆盖(MQ)



大垄宽70cm,高20cm,小垄宽40cm,高15cm,留10cm渗水带,用120cm宽的黑色地膜全地面覆盖,按每幅播种2行、行距40cm、株距33cm的“品”字形大垄2侧穴播马铃薯。秋季覆膜
地膜春覆盖(MC)



大垄宽70cm,高20cm,小垄宽40cm,高15cm,留10cm渗水带,用120cm宽的黑色地膜全地面覆盖,按每幅播种2行、行距40cm、株距33cm的“品”字形大垄2侧穴播马铃薯。春季覆膜
秸秆秋覆盖(JQ)

秸秆覆盖带和种植带均为60cm,2行种植,行距60cm,株距33cm,总带宽120cm,秸秆覆盖量9000kg/hm2,玉米秸秆收获后当季覆盖
秸秆春覆盖(JC)

秸秆覆盖带和种植带均为60cm,2行种植,行距60cm,株距33cm,总带宽120cm,秸秆覆盖量9000kg/hm2,玉米秸秆收获后春季覆盖
露地对照(CK)
平作不覆盖,株距33cm,行距60cm,垄宽120cm

图2

不同处理全生育期0~25cm土层土壤平均温度

图3

不同处理马铃薯全生育期0~25cm土层土壤平均温度动态变化

图4

马铃薯盛花期耕层土壤温度和大气温度的日变化

图5

不同处理对最低点(7:00)土壤温度梯度的影响 MR:苗期;TI:现蕾期;TE:盛花期;MT:膨大期;SA:成熟期。垂直误差棒表示0.05上差异显著(n=3)。下同

图6

不同处理对最高点(17:00)土壤温度梯度的影响

图7

秸秆覆盖处理横向温度梯度日变化

表2

马铃薯产量及相关性状

年份
Year
处理
Treatment
单株结薯数
Potato number per plant
单薯重
Single potato weight (g)
鲜薯产量
Fresh potato yield (kg/hm2)
商品薯率
Commercial potato rate (%)
2018 MQ 6.0ab 115.7a 36 843.2a 86.0ab
MC 5.6b 117.6a 36 052.2a 87.5a
JQ 7.1a 87.1b 31 878.7b 80.6b
JC 7.0a 87.1b 31 693.0b 80.4b
CK 6.6ab 85.0b 27 492.5c 73.9c
变异系数CV (%) 10.0 16.9 11.5 6.6
2019 MQ 6.6c 118.4a 42 569.2a 85.1a
MC 6.6c 116.0a 36 467.3b 87.1a
JQ 7.5a 103.5b 40 040.0ab 80.5bc
JC 7.2b 103.4b 36 167.2b 80.2b
CK 7.3ab 93.9c 33 497.7c 75.5c
变异系数CV (%) 5.9 9.4 9.4 5.6
[1] Zhao H, Xiong Y, Li F, et al. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agricultural Water Management, 2012, 104:68-78.
doi: 10.1016/j.agwat.2011.11.016
[2] Li Q, Li H, Zhang L, et al. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crops Research, 2018, 221:50-60.
doi: 10.1016/j.fcr.2018.02.017
[3] Keesstra S D, Rodrigo-Comino J, Novara A, et al. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena, 2019, 174:95-103.
doi: 10.1016/j.catena.2018.11.007
[4] Wang J, Ghimire R, Fu X, et al. Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield. Agricultural Water Management, 2018, 206:95-101.
doi: 10.1016/j.agwat.2018.05.004
[5] Abbas E R, Wei W, Zejun T, et al. Straw mulch can induce greater soil losses from loess slopes than no mulch under extreme rainfall conditions. Agricultural and Forest Meteorology, 2017, 232:141-151.
doi: 10.1016/j.agrformet.2016.07.015
[6] 王曼华, 陈为峰, 宋希亮, 等. 秸秆双层覆盖对盐碱地水盐运动影响初步研究. 土壤学报, 2017, 54(6):1395-1403.
[7] Gu X, Li Y, Du Y. Biodegradable film mulching improves soil temperature,moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil and Tillage Research, 2017, 171:42-50.
doi: 10.1016/j.still.2017.04.008
[8] 杨长刚, 柴守玺. 秸秆带状覆盖对旱地冬小麦产量及土壤水热利用的调控效应. 应用生态学报, 2018, 29(10):3245-3255.
[9] Stephen S D, Vance M W, Shinsuke A. White-striped plastic mulch reduces root-zone temperatures during establishment and increases early season yields of annual winter strawberry. Scientia Horticulturae, 2019, 243:602-608.
doi: 10.1016/j.scienta.2018.09.018
[10] 程宏波, 牛建彪, 柴守玺, 等. 不同覆盖材料和方式对旱地春小麦产量及土壤水温环境的影响. 草业学报, 2016(2):47-57.
[11] 陈玉章, 柴守玺, 范颖丹, 等. 覆盖模式对旱地冬小麦土壤温度和产量的影响. 中国农业气象, 2014, 35(4):403-409.
[12] Prosdocimi M, Jordán A, Tarolli P, et al. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. The Science of the Total Environment, 2016, 547:323-330.
doi: S0048-9697(15)31232-8 pmid: 26789370
[13] 祖米来提·吐尔干, 林涛, 严昌荣, 等. 地膜覆盖时间对新疆棉田水热及棉花耗水和产量的影响. 农业工程学报, 2018, 34(11):113-120.
[14] 周瑜, 苏旺, 王舰, 等. 不同覆盖方式和施氮量对糜子光合特性及产量性状的影响. 作物学报, 2016, 42(6):873-885.
[15] 王晓宇, 郭华春. 不同培育温度对马铃薯生长及产量的影响. 中国马铃薯, 2009, 23(6):344-346.
[16] 骆冬洁, 崔明奎. 对地膜残留问题的思考及建议. 中国农业信息, 2014(12):25-26.
[17] 刘超吉, 侯书林, 甄健民, 等. 南疆棉田残膜污染现状及防治途径. 农业工程, 2018, 8(3):45-51.
[18] 于庆峰, 苗庆丰, 史海滨, 等. 秸秆覆盖量对土壤温度和春玉米耗水规律及产量的影响. 水土保持研究, 2018, 25(3):111-116.
[19] 蔡太义, 贾志宽, 黄耀威, 等. 中国旱作农区不同量秸秆覆盖综合效应研究进展Ⅰ.不同量秸秆覆盖的农田生态环境效应. 干旱地区农业研究, 2011, 29(5):63-68.
[20] 闫宗正, 陈素英, 张喜英, 等. 秸秆覆盖时间和覆盖量对冬小麦田温度效应及地上地下生长的影响. 中国生态农业学报, 2017, 25(12):1779-1791.
[21] 常磊, 韩凡香, 柴雨葳, 等. 秸秆带状覆盖对半干旱雨养区冬小麦田地温和产量的影响. 应用生态学报, 2018, 29(9):2949-2958.
[22] Wang Y M, Chen S Y, Sun H Y, et al. Effects of different cultivation practices on soil temperature and wheat spike differentiation. Cereal Research Communications, 2009, 37(4):575-584.
doi: 10.1556/CRC.37.2009.4.12
[23] 钱玉平, 田慧慧, 程宏波, 等. 秸秆覆盖及播种方式对马铃薯耗水特性和产量的影响. 中国生态农业学报(中英文), 2020, 28(6):826-834.
[24] 李辉, 柴守玺, 常磊, 等. 秸秆带状覆盖下培土对马铃薯产量与水分利用效率的影响. 农业工程学报, 2019, 35(21):107-115.
[25] 杨长刚, 柴守玺. 秸秆带状覆盖对旱地冬小麦产量及土壤水热利用的调控效应. 应用生态学报, 2018, 29(10):3245-3255.
[26] 胡新元, 谢奎忠, 陆立银, 等. 不同功能地膜覆盖对旱地马铃薯土壤水热效应和产量的影响. 中国马铃薯, 2019, 33(3):146-151.
[27] 梅四卫, 朱涵珍, 王术, 等. 不同覆盖方式对土壤水肥热状况以及玉米产量影响. 灌溉排水学报, 2020, 39(4):68-73.
[28] 梁冰妍, 韩凡香, 王闻天, 等. 不同覆盖材料对土壤温度及马铃薯产量的影响. 安徽农学通报, 2019, 25(11):35-37,39.
[29] 霍轶珍, 丁春莲, 银花, 等. 不同材料覆盖对马铃薯田土壤水热状况及产量的影响. 干旱区资源与环境, 2019, 33(1):90-94.
[30] 郭振, 卢垟杰. 表土层土壤温度的日变化规律. 农业与技术, 2020, 40(6):9-11.
[31] 马稚桐, 王文科, 张在勇, 等. 浅层包气带土壤水昼夜分布变化规律模拟研究. 水资源与水工程学报, 2019, 30(2):245-251,260.
[32] 程璨. 空青山次生栎林温度垂直梯度变化特征研究. 南京:南京林业大学, 2017.
[33] 孙露露. 温度梯度下土壤渗流与污染物迁移的数值模拟. 扬州:扬州大学, 2015.
[34] 陈敏, 陈孝杨, 王校刚, 等. 煤矿区重构土壤剖面水气变化及其对温度梯度的响应. 煤炭学报, 2020, 46(4):1-11.
[35] 苏建云, 金飞鹏, 杨立军. 宁夏中部干旱带旱地马铃薯覆膜种植技术研究. 宁夏农林科技, 2015, 56(12):9-10.
[36] 董永威. 间作及不同覆盖对冬马铃薯和宿根蔗的效应研究. 南宁:广西大学, 2018.
[37] 陈素英, 张喜英, 孙宏勇, 等. 华北平原秸秆覆盖冬小麦减产原因分析. 中国生态农业学报, 2013, 21(5):519-525.
[38] 高亚军, 李生秀. 旱地秸秆覆盖条件下作物减产的原因及作用机制分析. 农业工程学报, 2005, 21(7):15-19.
[39] 马建涛, 程宏波, 陈玉章, 等. 不同覆盖方式对旱地马铃薯耗水特性和产量的影响. 生态学杂志, 2020, 39(7):2242-2250.
[1] 石雄高, 裴雪霞, 党建友, 张定一. 小麦微喷(滴)灌水肥一体化高产优质高效生态栽培研究进展[J]. 作物杂志, 2022, (1): 1–10
[2] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[3] 何宇轩, 李雅娟, 周明卓, 眭锋, 吕伟生, 张俊, 曾勇军, 黄山. 秸秆全量还田下施用过氧化钙对南方双季稻产量和稻田温室气体排放的影响[J]. 作物杂志, 2022, (1): 116–123
[4] 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137–141
[5] 刘子刚, 卢海博, 武敏桦, 赵海超, 魏东, 黄智鸿. 化控剂玉黄金对春玉米抗倒伏性状及产量的影响[J]. 作物杂志, 2022, (1): 142–146
[6] 靳丹, 冯乃杰, 郑殿峰, 王诗雅. 5-氨基乙酰丙酸对绿豆碳代谢及产量的影响[J]. 作物杂志, 2022, (1): 147–153
[7] 谢慧敏, 吴可, 刘文奇, 韦国良, 陆献, 李壮林, 韦善清, 梁和, 江立庚. 海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响[J]. 作物杂志, 2022, (1): 161–166
[8] 柏军兵, 王艳杰, 王德梅, 杨玉双, 王玉娇, 郭丹丹, 刘哲文, 常旭虹, 石书兵, 赵广才. 强筋小麦产量和品质对不同土壤条件及施氮水平的响应[J]. 作物杂志, 2022, (1): 167–173
[9] 杜昕, 李博, 毛鲁枭, 陈伟, 张玉先, 曹亮. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响[J]. 作物杂志, 2022, (1): 174–178
[10] 王庆彬, 卢洁春, 彭春娥, 孟慧, 刘治国, 王洪凤, 张民. 不同氮量处理配施宛氏拟青霉提取物对小白菜生长和氮素吸收的影响[J]. 作物杂志, 2022, (1): 190–195
[11] 李润卿, 申勇, 朱宽宇, 王志琴, 杨建昌. 施氮量对超级稻南粳9108产量、淀粉RVA谱特征值和理化特性的影响[J]. 作物杂志, 2022, (1): 205–212
[12] 冯素芬, 刘元剑, 许蕊淇, 张薇. 云南省近年审定鲜食玉米品种的主要性状分析[J]. 作物杂志, 2022, (1): 220–226
[13] 张胜全, 叶志杰, 任立平, 高新欢, 王拯, 杨永利, 穆磊, 董艳华, 陈兆波. “十五”以来我国杂交小麦审定品种分析[J]. 作物杂志, 2022, (1): 38–43
[14] 宋全昊, 金艳, 宋佳静, 白冬, 赵立尚, 陈杰, 朱统泉. 人工合成六倍体小麦在黄淮麦区育种中的利用性评价[J]. 作物杂志, 2022, (1): 56–64
[15] 唐刚, 廖萍, 眭锋, 吕伟生, 张俊, 曾勇军, 黄山. 秸秆全量还田下晚稻季翻耕对双季稻田温室气体排放和产量的影响[J]. 作物杂志, 2021, (6): 101–107
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!