作物杂志,2022, 第5期: 167173 doi: 10.16035/j.issn.1001-7283.2022.05.024
张建业(), 杜庆志, 刘翔, 邓佳辉, 焦芹, 龚洛, 姜兴印()
Zhang Jianye(), Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin()
摘要:
以玉米品种登海605为材料,探讨了S-诱抗素(S-ABA)浸种处理对盐碱胁迫下玉米种子萌发及活性的影响,以及S-ABA拌种和喷雾处理对盐碱胁迫下玉米生长的影响。结果表明,不同浓度NaCl处理均会对玉米种子萌发产生抑制作用,S-ABA浸种处理能减小盐胁迫对种子的伤害,其中NaCl浓度为90mmol/L条件下S-ABA浸种浓度6mg/L时效果最好,发芽率高达95.00%,与对照相比,α-淀粉酶活性提高率为83.33%;温室盐碱土壤培养条件下,S-ABA拌种和喷雾处理均可显著提高玉米的抗盐碱能力,其中S-ABA拌种浓度2.0mg/10kg和喷雾浓度50mg/L时抗盐碱效果最佳,与对照相比,各项生长指标显著提高;且经过2种处理的结合,玉米的抗盐碱能力得到进一步提升,效果要优于拌种或者喷雾单独处理。
[1] | 郭皓升. 中国玉米产业面临的挑战与机遇. 现代管理科学, 2020(2):31-33. |
[2] |
Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45(2):437-448.
doi: 10.2135/cropsci2005.0437 |
[3] | 范惠玲, 白生文, 朱雪峰, 等. 油菜及其近缘种种子萌发期耐盐碱性差异. 作物杂志, 2019(3):178-184. |
[4] |
Zhang W J, Yuan N, Su H B, et al. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS ONE, 2014, 9(1):e84750.
doi: 10.1371/journal.pone.0084750 |
[5] | Cheng T L, Chen J H, Zhang J B, et al. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance. Frontiers in Plant Science, 2015, 6:30-42. |
[6] | Lu N W, Duan B L, Li C Y. Physiological responses to drought and enhanced UV-B radiation in two contrasting. Picea Asperata Populations, 2007, 37(7):1253-1262. |
[7] | Yang T, Poovaiah B W. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(6):4097-4102. |
[8] |
Shaheen H L, Iqbal M, Azeem M, e al. K-priming positively modulates growth and nutrient status of salt-stressed cotton (Gossypium hirsutum) seedlings. Archives of Agronomy and Soil Science, 2016, 62(6):759-768.
doi: 10.1080/03650340.2015.1095292 |
[9] |
Ruiz K B, Biondi S, Martinez E A, et al. Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems, 2016, 150(2):357-371.
doi: 10.1080/11263504.2015.1027317 |
[10] | 曹荷莉, 丁日升, 薛富岚. 不同水盐胁迫对番茄生长发育和产量的影响研究. 灌溉排水学报, 2019, 38(2):29-35. |
[11] |
Liu B S, Kang C L, Wang X, et al. Physiological and morphological responses of Leymus chinensis to saline-alkali stress. Grassland Science, 2015, 61(4):217-226.
doi: 10.1111/grs.12099 |
[12] |
Hoai N T T, Shim I S, Kobayashi K, et al. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regulation, 2003, 41(2):159-164.
doi: 10.1023/A:1027305522741 |
[13] |
Ahmad P, Jaleel C A, Salem M A, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 2020, 30:161-175.
doi: 10.3109/07388550903524243 |
[14] |
Niu X, Bressan R A, Paul M, et al. Ion Homeostasis in NaCl Stress Environments. Plant Physiology, 1995, 109(3):735-742.
pmid: 12228628 |
[15] |
Feng X, Xu Y Q, Peng L, et al. TaEXPB7-B,a β-expansin gene involved in low-temperature stress and abscisic acid responses,promotes growth and cold resistance in Arabidopsis thaliana. Journal of Plant Physiology, 2019, 240:153004.
doi: 10.1016/j.jplph.2019.153004 |
[16] |
Yan Y, Liu W, Wei Y W, et al. MeCIPK 23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava. Plant Biotechnology Journal, 2020, 18(7):1504-1506.
doi: 10.1111/pbi.13321 pmid: 31858710 |
[17] | Yang T, Lv R, Li J, et al. Phytochrome A and B negatively regulate salt stress tolerance of nicotiana tobacum via abscisic acid-jasmonic acid synergistic cross talk. Plant and Cell Physiology, 2018, 59(11):2381-2393. |
[18] | 彭云玲, 李伟丽, 王坤泽, 等. NaCl胁迫对玉米耐盐系与盐敏感系萌发和幼苗生长的影响. 草业学报, 2012, 21(4):62-71. |
[19] |
单皓, 张虎, 崔爱民, 等. 外源生长调节物质对盐胁迫下玉米种子萌发的影响. 中国农业科技导报, 2018, 20(8):82-90.
doi: 10.13304/j.nykjdb.2018.0288 |
[20] |
Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 2002, 53(379):2401-2410.
pmid: 12432032 |
[21] |
Zong Y Z, Wang W F, Xue Q W, et al. Interactive effects of elevated CO2 and drought on photosynthetic capacity and PSII performance in maize. Photosynthetica, 2014, 52(1):63-70.
doi: 10.1007/s11099-014-0009-x |
[22] | 罗青红, 寇云玲, 史彦江, 等. 6种杂交榛对新疆盐碱土的生理适应性研究. 西北植物学报, 2013, 33(9):1867-1873. |
[1] | 张东霞, 秦安振. 冬小麦-夏玉米作物蒸散量及其水热关系研究[J]. 作物杂志, 2022, (6): 145151 |
[2] | 侯雪, 陈雨洁, 李春苗, 方淑梅, 梁喜龙, 郑殿峰. 调环酸钙对盐碱胁迫下绿豆苗期生长的调控作用[J]. 作物杂志, 2022, (6): 174180 |
[3] | 乔江方, 张盼盼, 邵运辉, 刘京宝, 李川, 张美微, 黄璐. 不同种植密度和品种对夏玉米物质生产和产量构成的影响[J]. 作物杂志, 2022, (6): 186192 |
[4] | 张瑞栋, 梁晓红, 刘静, 南怀林, 王颂宇, 曹雄. 种子引发对干旱胁迫下高粱种子发芽及生理特性的影响[J]. 作物杂志, 2022, (6): 234240 |
[5] | 郭欢乐, 汤彬, 李涵, 曹钟洋, 曾强, 刘良武, 陈志辉. 湖南省玉米地方品种表型性状综合评价及类群划分[J]. 作物杂志, 2022, (6): 3341 |
[6] | 续创业, 张建军, 周刚, 张铠鹏, 朱晓惠, 王甲玺, 党翼, 赵刚, 王磊, 李尚中, 樊廷录. 陇东旱塬密植高产机械粒收玉米新品种筛选与评价[J]. 作物杂志, 2022, (5): 104110 |
[7] | 李龙, 肖让, 张永玲. 氮磷钾配施对制种玉米产量及经济效益的影响[J]. 作物杂志, 2022, (5): 111117 |
[8] | 历艳璐, 王俊鹏, 于欣志, 魏宏磊, 陈麒宇, 赵洪祥, 徐晨, 边少锋, 张治安. 冷凉区不同地膜覆盖对玉米干物质和氮素积累与分配的影响[J]. 作物杂志, 2022, (5): 124129 |
[9] | 董扬. 糜子对不同除草剂的生理响应机制研究[J]. 作物杂志, 2022, (5): 255260 |
[10] | 周超, 张田田, 杨丽娜, 张勇, 马冲, 代伟程, 吴翠霞, 宋敏. 根部吸收氟啶虫酰胺在玉米植株中的分布特点及对玉米蚜虫活性效果评价[J]. 作物杂志, 2022, (5): 261266 |
[11] | 段梦冉, 刘丰泽, 葛建镕, 易红梅, 杨洪明, 高玉倩, 岳鹏武, 马文宇, 班秀丽, 王凤格. 吉林省主推玉米品种的SSR分子标记纯度鉴定[J]. 作物杂志, 2022, (5): 3441 |
[12] | 朱航, 崔方庆, 卢传礼, 陈卫卫, 李旭辉, 陆思奇, 张湘博, 赵华, 齐永文. 不同籽粒颜色玉米自交系类胡萝卜素含量分析[J]. 作物杂志, 2022, (5): 6268 |
[13] | 邹小云, 官梅, 官春云. 甘蓝型油菜氮素高效吸收的植株形态与生理特性研究[J]. 作物杂志, 2022, (5): 97103 |
[14] | 王元元, 谷子寒, 陈平平, 易镇邪. 镉污染稻田玉米对水稻的季节性替代种植可行性研究[J]. 作物杂志, 2022, (4): 187192 |
[15] | 王家保, 冀怀远, 梅家法, 陶志国, 疏志峰, 江三桥. 玉米新品种荃科玉900的选育与栽培制种技术[J]. 作物杂志, 2022, (4): 267270 |
|