作物杂志,2022, 第5期: 167–173 doi: 10.16035/j.issn.1001-7283.2022.05.024

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

盐碱胁迫下S-诱抗素对玉米萌发及生长的影响

张建业(), 杜庆志, 刘翔, 邓佳辉, 焦芹, 龚洛, 姜兴印()   

  1. 山东农业大学植物保护学院,271018,山东泰安
  • 收稿日期:2021-06-26 修回日期:2021-11-01 出版日期:2022-10-15 发布日期:2022-10-19
  • 通讯作者: 姜兴印,主要从事种衣剂、植调剂研究,E-mail:xyjiang@sdau.edu.cn
  • 作者简介:张建业,研究方向为植调剂对玉米的生长调控作用,E-mail: 358045404@qq.com
  • 基金资助:
    国家重点研发计划“黄淮海夏玉米化肥农药减施技术集成研究与示范”(2018YFD0200604);山东省现代农业产业技术体系“玉米创新技术产业”(SDAIT-02-10);山东“双一流”奖补项目“农作物病虫害绿色防治”(SYL2017-XTTD11)

The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress

Zhang Jianye(), Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin()   

  1. College of Plant Protection, Shandong Agricultural University, Taiʼan 271018, Shandong, China
  • Received:2021-06-26 Revised:2021-11-01 Online:2022-10-15 Published:2022-10-19

摘要:

以玉米品种登海605为材料,探讨了S-诱抗素(S-ABA)浸种处理对盐碱胁迫下玉米种子萌发及活性的影响,以及S-ABA拌种和喷雾处理对盐碱胁迫下玉米生长的影响。结果表明,不同浓度NaCl处理均会对玉米种子萌发产生抑制作用,S-ABA浸种处理能减小盐胁迫对种子的伤害,其中NaCl浓度为90mmol/L条件下S-ABA浸种浓度6mg/L时效果最好,发芽率高达95.00%,与对照相比,α-淀粉酶活性提高率为83.33%;温室盐碱土壤培养条件下,S-ABA拌种和喷雾处理均可显著提高玉米的抗盐碱能力,其中S-ABA拌种浓度2.0mg/10kg和喷雾浓度50mg/L时抗盐碱效果最佳,与对照相比,各项生长指标显著提高;且经过2种处理的结合,玉米的抗盐碱能力得到进一步提升,效果要优于拌种或者喷雾单独处理。

关键词: 玉米, 盐碱胁迫, S-诱抗素, 种子处理, 生理特性

Abstract:

Taking Denghai 605 as material, the effects of S-ABA soaking on corn seed germination and activity, and the effects of S-ABA seed dressing and spraying on corn growth under salt-alkali stress were studied. The result indicated: treatments with different concentrations of NaCl could inhibit the germination of corn seeds. Seed soaking with S-ABA could reduce the damage of salt stress to seeds. The best effect was obtained when the concentration of S-ABA was 6mg/L under the condition of 90mmol/L NaCl concentration, and the germination rate was as high as 95.00%. Compared with the control, the increase rate of α-amylase activity was 83.33%; under the conditions of greenhouse saline-alkali soil culture, S-ABA seed dressing and spraying treatment both could significantly improve the salt-alkali resistance of corn. The salt-alkali resistance of the treatment was the best when the S-ABA seed dressing concentration was 2.0mg/10kg and the S-ABA spraying concentration was 50mg/L. Compared with the control, each growth index was significantly improved. Through the combination of the two treatments, the salt-alkali resistance of maize had been further improved, and the effect was better than any single treatment in seed dressing or spraying.

Key words: Maize, Salt-alkali stress, S-ABA, Seed treatment, Physiological characteristics

表1

不同浓度NaCl处理对玉米萌发的影响

处理
Treatment
发芽势
Germination
potential (%)
发芽率
Germination
percentage (%)
根长
Root length
(cm)
芽长
Bud length
(cm)
根鲜重
Root fresh
weight (g)
芽鲜重
Bud fresh
weight (g)
α-淀粉酶活性
α-amylase activity
[mg/(min·g)]
Y0 95.00±0.17a 96.67±0.38a 15.35±0.24a 7.83±0.15a 3.45±0.03a 2.34±0.05a 4.14±0.29a
Y1 80.00±0.42b 93.33±0.25a 9.84±0.20b 6.39±0.20b 3.06±0.03b 1.97±0.01b 3.31±0.11b
Y2 76.67±1.04b 90.00±0.13a 7.58±0.19c 4.61±0.13c 2.27±0.01c 1.47±0.04c 2.15±0.14c
Y3 48.33±0.50c 78.33±0.33b 4.25±0.41d 2.37±0.08d 1.23±0.01d 0.74±0.02d 1.83±0.11d
Y4 33.33±0.50d 71.67±0.22c 3.13±0.14e 1.21±0.18e 0.46±0.03e 0.36±0.04e 1.21±0.13e
Y5 20.00±0.42e 55.00±0.63d 2.01±0.16f 0.68±0.36f 0.41±0.03f 0.18±0.03f 0.85±0.07f

表2

不同浓度S-ABA处理对玉米萌发的影响

处理
Treatment
发芽势
Germination
potential (%)
发芽率Germination
percentage (%)
根长
Root length
(cm)
芽长
Bud length
(cm)
根鲜重
Root fresh
weight (g)
芽鲜重
Bud fresh
weight (g)
α-淀粉酶活性
α-amylase activity
[mg/(min·g)]
T0 93.33±0.38a 98.33±0.19a 15.13±0.18a 7.75±0.12a 3.56±0.02a 2.35±0.03a 4.06±0.11a
T1 46.67±0.20e 73.33±0.28d 3.83±0.10f 2.14±0.09f 1.19±0.02f 0.69±0.03f 1.74±0.23e
T2 58.33±0.21d 80.00±0.07c 4.42±0.05e 2.88±0.10e 1.62±0.02e 0.96±0.02e 2.06±0.11d
T3 63.33±0.20c 90.00±0.07b 5.10±0.06d 3.30±0.07d 1.92±0.01d 1.35±0.02d 2.53±0.21c
T4 73.33±0.28b 95.00±0.07a 6.52±0.08b 4.23±0.09b 2.53±0.02b 1.63±0.02b 3.19±0.17b
T5 66.67±0.15c 88.33±0.20b 5.97±0.14c 3.84±0.06c 2.22±0.02c 1.47±0.01c 2.92±0.14b

表3

S-ABA拌种处理对玉米种子萌发及幼苗生长的影响

处理
Treatment
发芽势
Germination
potential (%)
发芽率
Germination
percentage (%)
株高
Plant height
(cm)
根长
Root length
(cm)
地上鲜重
Aboveground
fresh weight (g)
地下鲜重
Underground
fresh weight (g)
S1 85.00±0.48a 98.33±0.29a 42.39±0.07a 43.47±0.17a 3.18±0.07a 5.08±0.04a
S2 26.67±0.44f 66.67±0.25d 32.27±0.16e 25.41±0.19f 2.08±0.12e 2.56±0.05e
S3 43.33±0.28e 83.33±0.18c 35.67±0.10d 27.81±0.06e 2.31±0.03d 2.62±0.03e
S4 51.67±0.23d 86.67±0.23bc 36.80±0.18c 29.67±0.17d 2.42±0.08d 2.99±0.08d
S5 61.67±0.21c 88.33±0.29bc 37.52±0.22c 33.52±0.10b 2.57±0.05c 3.25±0.03c
S6 70.00±0.09b 91.67±0.21b 40.45±0.32b 33.33±0.12b 2.87±0.02b 3.73±0.02b
S7 55.00±0.09d 86.67±0.23bc 37.32±0.07c 30.62±0.02c 2.80±0.05b 3.63±0.01b

图1

S-ABA拌种处理对玉米幼苗根活力和叶绿素含量的影响 不同字母表示0.05水平差异显著,下同

图2

S-ABA拌种处理对玉米幼苗抗氧化酶活性的影响

图3

S-ABA喷雾处理对玉米幼苗根活力和叶绿素含量的影响

图4

S-ABA喷雾处理对玉米幼苗抗氧化酶活性的影响

图5

S-ABA拌种和喷雾混合处理对玉米根系活力和叶绿素含量的影响

图6

S-ABA拌种和喷雾处理对玉米幼苗抗氧化酶活性的影响

[1] 郭皓升. 中国玉米产业面临的挑战与机遇. 现代管理科学, 2020(2):31-33.
[2] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45(2):437-448.
doi: 10.2135/cropsci2005.0437
[3] 范惠玲, 白生文, 朱雪峰, 等. 油菜及其近缘种种子萌发期耐盐碱性差异. 作物杂志, 2019(3):178-184.
[4] Zhang W J, Yuan N, Su H B, et al. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS ONE, 2014, 9(1):e84750.
doi: 10.1371/journal.pone.0084750
[5] Cheng T L, Chen J H, Zhang J B, et al. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance. Frontiers in Plant Science, 2015, 6:30-42.
[6] Lu N W, Duan B L, Li C Y. Physiological responses to drought and enhanced UV-B radiation in two contrasting. Picea Asperata Populations, 2007, 37(7):1253-1262.
[7] Yang T, Poovaiah B W. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(6):4097-4102.
[8] Shaheen H L, Iqbal M, Azeem M, e al. K-priming positively modulates growth and nutrient status of salt-stressed cotton (Gossypium hirsutum) seedlings. Archives of Agronomy and Soil Science, 2016, 62(6):759-768.
doi: 10.1080/03650340.2015.1095292
[9] Ruiz K B, Biondi S, Martinez E A, et al. Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems, 2016, 150(2):357-371.
doi: 10.1080/11263504.2015.1027317
[10] 曹荷莉, 丁日升, 薛富岚. 不同水盐胁迫对番茄生长发育和产量的影响研究. 灌溉排水学报, 2019, 38(2):29-35.
[11] Liu B S, Kang C L, Wang X, et al. Physiological and morphological responses of Leymus chinensis to saline-alkali stress. Grassland Science, 2015, 61(4):217-226.
doi: 10.1111/grs.12099
[12] Hoai N T T, Shim I S, Kobayashi K, et al. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regulation, 2003, 41(2):159-164.
doi: 10.1023/A:1027305522741
[13] Ahmad P, Jaleel C A, Salem M A, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 2020, 30:161-175.
doi: 10.3109/07388550903524243
[14] Niu X, Bressan R A, Paul M, et al. Ion Homeostasis in NaCl Stress Environments. Plant Physiology, 1995, 109(3):735-742.
pmid: 12228628
[15] Feng X, Xu Y Q, Peng L, et al. TaEXPB7-B,a β-expansin gene involved in low-temperature stress and abscisic acid responses,promotes growth and cold resistance in Arabidopsis thaliana. Journal of Plant Physiology, 2019, 240:153004.
doi: 10.1016/j.jplph.2019.153004
[16] Yan Y, Liu W, Wei Y W, et al. MeCIPK 23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava. Plant Biotechnology Journal, 2020, 18(7):1504-1506.
doi: 10.1111/pbi.13321 pmid: 31858710
[17] Yang T, Lv R, Li J, et al. Phytochrome A and B negatively regulate salt stress tolerance of nicotiana tobacum via abscisic acid-jasmonic acid synergistic cross talk. Plant and Cell Physiology, 2018, 59(11):2381-2393.
[18] 彭云玲, 李伟丽, 王坤泽, 等. NaCl胁迫对玉米耐盐系与盐敏感系萌发和幼苗生长的影响. 草业学报, 2012, 21(4):62-71.
[19] 单皓, 张虎, 崔爱民, 等. 外源生长调节物质对盐胁迫下玉米种子萌发的影响. 中国农业科技导报, 2018, 20(8):82-90.
doi: 10.13304/j.nykjdb.2018.0288
[20] Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 2002, 53(379):2401-2410.
pmid: 12432032
[21] Zong Y Z, Wang W F, Xue Q W, et al. Interactive effects of elevated CO2 and drought on photosynthetic capacity and PSII performance in maize. Photosynthetica, 2014, 52(1):63-70.
doi: 10.1007/s11099-014-0009-x
[22] 罗青红, 寇云玲, 史彦江, 等. 6种杂交榛对新疆盐碱土的生理适应性研究. 西北植物学报, 2013, 33(9):1867-1873.
[1] 张东霞, 秦安振. 冬小麦-夏玉米作物蒸散量及其水热关系研究[J]. 作物杂志, 2022, (6): 145–151
[2] 侯雪, 陈雨洁, 李春苗, 方淑梅, 梁喜龙, 郑殿峰. 调环酸钙对盐碱胁迫下绿豆苗期生长的调控作用[J]. 作物杂志, 2022, (6): 174–180
[3] 乔江方, 张盼盼, 邵运辉, 刘京宝, 李川, 张美微, 黄璐. 不同种植密度和品种对夏玉米物质生产和产量构成的影响[J]. 作物杂志, 2022, (6): 186–192
[4] 张瑞栋, 梁晓红, 刘静, 南怀林, 王颂宇, 曹雄. 种子引发对干旱胁迫下高粱种子发芽及生理特性的影响[J]. 作物杂志, 2022, (6): 234–240
[5] 郭欢乐, 汤彬, 李涵, 曹钟洋, 曾强, 刘良武, 陈志辉. 湖南省玉米地方品种表型性状综合评价及类群划分[J]. 作物杂志, 2022, (6): 33–41
[6] 续创业, 张建军, 周刚, 张铠鹏, 朱晓惠, 王甲玺, 党翼, 赵刚, 王磊, 李尚中, 樊廷录. 陇东旱塬密植高产机械粒收玉米新品种筛选与评价[J]. 作物杂志, 2022, (5): 104–110
[7] 李龙, 肖让, 张永玲. 氮磷钾配施对制种玉米产量及经济效益的影响[J]. 作物杂志, 2022, (5): 111–117
[8] 历艳璐, 王俊鹏, 于欣志, 魏宏磊, 陈麒宇, 赵洪祥, 徐晨, 边少锋, 张治安. 冷凉区不同地膜覆盖对玉米干物质和氮素积累与分配的影响[J]. 作物杂志, 2022, (5): 124–129
[9] 董扬. 糜子对不同除草剂的生理响应机制研究[J]. 作物杂志, 2022, (5): 255–260
[10] 周超, 张田田, 杨丽娜, 张勇, 马冲, 代伟程, 吴翠霞, 宋敏. 根部吸收氟啶虫酰胺在玉米植株中的分布特点及对玉米蚜虫活性效果评价[J]. 作物杂志, 2022, (5): 261–266
[11] 段梦冉, 刘丰泽, 葛建镕, 易红梅, 杨洪明, 高玉倩, 岳鹏武, 马文宇, 班秀丽, 王凤格. 吉林省主推玉米品种的SSR分子标记纯度鉴定[J]. 作物杂志, 2022, (5): 34–41
[12] 朱航, 崔方庆, 卢传礼, 陈卫卫, 李旭辉, 陆思奇, 张湘博, 赵华, 齐永文. 不同籽粒颜色玉米自交系类胡萝卜素含量分析[J]. 作物杂志, 2022, (5): 62–68
[13] 邹小云, 官梅, 官春云. 甘蓝型油菜氮素高效吸收的植株形态与生理特性研究[J]. 作物杂志, 2022, (5): 97–103
[14] 王元元, 谷子寒, 陈平平, 易镇邪. 镉污染稻田玉米对水稻的季节性替代种植可行性研究[J]. 作物杂志, 2022, (4): 187–192
[15] 王家保, 冀怀远, 梅家法, 陶志国, 疏志峰, 江三桥. 玉米新品种荃科玉900的选育与栽培制种技术[J]. 作物杂志, 2022, (4): 267–270
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[2] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[3] 王袁,郭泽,李晓辉,徐世晓,邢学霞,张思琦,何佳,刘超,陈芳,杨铁钊. 不同温度条件下根结线虫侵染对烟草根系的影响[J]. 作物杂志, 2018, (4): 161 –166 .
[4] 方婧雯,邬燕,刘志华. 盐胁迫对罗布麻种子萌发及生理特性的影响[J]. 作物杂志, 2018, (4): 167 –174 .
[5] 李程勋,李爱萍,徐晓俞,郑开斌. 浅谈木豆的抗逆机制及在福建的应用前景[J]. 作物杂志, 2018, (4): 28 –31 .
[6] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69 –78 .
[7] 张明聪,战英策,何松榆,金喜军,王孟雪,任春元,张玉先. 氮密交互对红小豆干物质积累规律及产量的影响[J]. 作物杂志, 2018, (1): 141 –146 .
[8] 王春蕾,方志军,许艳蕊,卢晓平,穆春华,单凯,郝鲁江. 基于高通量测序技术分析使它隆对玉米根系内生菌多样性的影响[J]. 作物杂志, 2018, (1): 160 –165 .
[9] 郝艳芳,王良群,刘勇,张微,杨伟,白鸿雁,武擘. 高粱幼叶细胞悬浮系的建立[J]. 作物杂志, 2018, (1): 35 –40 .
[10] 张微,王良群,刘勇,郝艳芳,杨伟,白鸿雁,武擘. 农杆菌介导高粱遗传转化的相关因素优化[J]. 作物杂志, 2018, (1): 56 –61 .