作物杂志,2022, 第6期: 145–151 doi: 10.16035/j.issn.1001-7283.2022.06.021

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

冬小麦-夏玉米作物蒸散量及其水热关系研究

张东霞1(), 秦安振2()   

  1. 1河南省焦作水文水资源勘测局,454003,河南焦作
    2中国农业科学院农田灌溉研究所,453002,河南新乡
  • 收稿日期:2022-04-24 修回日期:2022-10-28 出版日期:2022-12-15 发布日期:2022-12-21
  • 通讯作者: 秦安振
  • 作者简介:张东霞,研究方向为水文水资源合理配置与利用,E-mail:jiaozuozdx@163.com
  • 基金资助:
    中央级科研院所基本科研业务费专项(FIRI2022-09)

Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System

Zhang Dongxia1(), Qin Anzhen2()   

  1. 1Jiaozuo Hydrology and Water Resources Survey Bureau, Jiaozuo 454003, Henan, China
    2Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, Henan, China
  • Received:2022-04-24 Revised:2022-10-28 Online:2022-12-15 Published:2022-12-21
  • Contact: Qin Anzhen

摘要:

作物蒸散量(ETc)是作物水分消耗的主要途径之一,在灌溉预报中有重要作用。为研究ETc与土壤含水量(SWC)和温度(Ts)的协同关系,以黄淮南部井灌区冬小麦-夏玉米为研究对象,设置4种灌溉水分下限(I1、I2、I3、I4),构建了ETc-水分-温度协同方程。结果表明,小麦季I1处理10~30cm的SWC最低,为15.1%,较其他处理降低10.5%。30~100cm土层SWC为19.5%~21.0%,差异不显著。玉米季各处理0~100cm SWC在24.3%~25.1%,差异不显著。冬小麦ETc在灌浆中期最大,夏玉米ETc在拔节期、大喇叭口期和抽雄吐丝期呈多峰曲线变化趋势。冬小麦-夏玉米ETc与0~30cm TsSWC呈多元线性相关关系(P < 0.001)。小麦季20cm的TsETc的影响显著高于10和30cm,表层0cm的Ts影响最小。小麦季20和30cm的SWCETc的影响显著高于10cm。玉米季各处理对ETc的影响以10~30cm Ts为主,对SWC的影响较小。

关键词: 作物蒸散量, 土壤含水量, 土壤温度, 冬小麦-夏玉米, 黄淮海平原

Abstract:

Crop evapotranspiration (ETc) is one of the main paths for crop water consumption and plays an important role in irrigation forecast. To explore the synergistic relationship between ETc and soil water content (SWC) and soil temperature (Ts), four lower limits (I1, I2, I3, I4) of SWC for initiating irrigation were set for a winter wheat-summer maize cropping system in well-irrigated areas of the Huang-Huai-Hai Plain. Consequently, a synergistic equation of ETc-SWC-Ts was established. The results showed that 10-30cm SWC (15.1%) of I1 in wheat season was the lowest, 10.5% lower than that of other treatments. SWC in 30-100cm soil layers was 19.5%-21.0%, and had no significance with other treatments. SWC of 0-100cm soil layer in maize season was 24.3%-25.1% for all treatments, with no significance also. ETc of winter wheat reached the maximum values at mid-grain filling stage, while ETc dynamics of summer maize displayed a multi-peak curve at jointing, bell-mouth, and heading and tasseling stages. Multivariate linear correlation was fitted to the relationship of ETc related to 0-30cm SWC and Ts in winter wheat-summer maize cropping system (P<0.001). The effects of Ts (20cm) on ETc was significantly higher than that of 10 and 30cm in winter wheat growing season, whereas the effects of Ts (0cm) was the smallest. Similarly, the effects of SWC of 20 and 30cm on ETc was significantly higher than that of 10cm for wheat. As for maize, the effects on ETc were mainly correlated to Ts of 10-30cm, whereas SWC had no significance effect on ETc.

Key words: Crop evapotranspiration, Soil water content, Soil temperature, Winter wheat-summer maize, Huang-Huai-Hai Plain

表1

许昌灌溉试验站2019-2020年冬小麦-夏玉米生育期气象要素

气象要素
Meteorological factor
2019 2020
10月
Oct.
11月
Nov.
12月
Dec.
1月
Jan.
2月
Feb.
3月
Mar.
4月
Apr.
5月
May
6月
Jun.
7月
Jul.
8月
Aug.
9月
Sep.
平均气温Mean air temperature (°C) 15.9 11.0 5.0 2.7 5.9 11.6 15.9 22.9 26.3 26.0 27.5 23.0
月降水量Monthly precipitation (mm) 2.6 0.6 14.1 48.4 9.8 18.0 17.5 91.3 186.7 220.8 125.6 33.1
平均相对湿度Mean relative humidity (%) 64.3 55.4 52.1 72.2 64.8 49.9 47.8 47.1 62.9 79.4 81.9 58.7
平均风速Mean wind speed (m/s) 1.22 1.50 1.62 1.27 1.89 2.17 2.10 2.15 1.76 1.75 1.75 1.71
月日照时数Monthly sunshine hours (h) 20.8 102.2 141.0 57.9 154.3 166.6 230.0 234.0 125.0 96.7 123.3 158.4
月总辐射量Monthly solar radiation (MJ/m2) 11.7 8.5 8.5 6.5 11.2 15.6 20.6 22.1 18.5 16.5 15.6 15.4

表2

冬小麦-夏玉米种植模式启动灌溉的土壤水分(田间持水量,V/V)下限 %

处理
Treatment
小麦Wheat 玉米苗期
Seedling stage of maize
苗期Seedling 拔节期Jointing 孕穗期Booting 灌浆期Filling
I1 45 55 55 45 45
I2 55 65 65 55 55
I3 65 75 75 65 65
I4 75 85 85 75 75

图1

2019-2020年冬小麦-夏玉米0~100cm土壤水分动态变化

表3

2019-2020年冬小麦-夏玉米生育期Ts °C

作物
Crop
处理
Treatment
土层深度
Soil depth (cm)
苗期
Seedling
越冬期
Over-wintering
返青拔节期
Regreening and jointing
开花孕穗期
Flowering and booting
灌浆期
Filling
成熟期
Maturity
平均
Average
冬小麦
Winter
wheat
I1 0~30 12.6d 4.6d 7.6de 11.6b 21.3a 26.3a 14.0ab
30~60 16.0b 7.2b 9.4b 11.6b 16.4c 19.2de 13.3b
60~100 17.2a 9.2a 9.4b 11.5b 15.0d 17.2f 13.3b
I2 0~30 12.6d 2.7e 6.9e 9.4c 15.8cd 18.5e 11.0c
30~60 16.3ab 7.3b 9.3bc 11.3b 16.0c 18.6e 13.1b
60~100 17.2a 9.7a 9.6b 11.5b 14.7d 16.8f 13.3b
I3 0~30 13.3d 7.4b 12.4a 14.0a 18.9b 21.0c 14.5a
30~60 15.9b 7.1b 9.2bc 11.4b 16.4c 19.1de 13.2b
60~100 17.3a 9.6a 9.6b 11.5b 14.8d 16.9f 13.3b
I4 0~30 14.8c 5.7c 8.3cd 11.4b 18.9b 23.0b 13.7b
30~60 15.9b 7.5b 9.4b 11.4b 16.0c 18.5e 13.1b
60~100 17.3a 9.8a 9.7b 11.6b 14.7d 16.8f 13.3b
作物
Crop
处理
Treatment
土层深度
Soil depth (cm)
苗期
Seedling
拔节期
Jointing
大喇叭口期
Bell-mouth
抽雄吐丝期
Heading and tasseling
灌浆期
Filling
成熟期
Maturity
平均
Average
夏玉米
Summer
maize
I1 0~30 26.8a 28.8a 28.2a 29.4a 26.5a 24.0a 27.3a
30~60 23.5c 25.4c 25.0c 26.4c 24.8cd 22.8b 24.7c
60~100 21.2d 23.2d 23.5de 24.6d 24.0de 22.7b 23.2d
I2 0~30 23.6c 25.4c 24.8c 26.6c 23.6e 19.9c 24.1c
30~60 23.0c 25.2c 25.0c 26.5c 25.0bc 23.0b 24.6c
60~100 20.3d 22.5d 23.0e 24.1d 23.6d 22.3b 22.6d
I3 0~30 24.7b 26.4b 26.1b 27.8b 26.3a 23.9a 24.7c
30~60 23.1c 24.9c 24.5cd 25.8c 24.2de 22.3b 23.1d
60~100 20.6d 22.7d 23.0e 24.1d 23.6e 22.3b 20.6e
I4 0~30 26.3a 27.8a 26.6b 27.9b 25.8ab 23.6a 26.3b
30~60 22.8c 24.8c 24.4c 26.0c 24.5d 22.6b 24.2c
60~100 20.5d 22.7d 23.0e 24.2d 23.7e 22.5b 22.8d

表4

2019-2020年冬小麦-夏玉米各生育期平均ETc的动态变化 mm/d

作物
Crop
处理
Treatment
苗期
Seedling
越冬期
Over-wintering
返青拔节期
Regreening and jointing
开花孕穗期
Flowering and booting
灌浆期
Filling
成熟期
Maturity
总计
Total
冬小麦
Winter wheat
I1 1.44c 0.64b 1.92c 3.42c 4.67c 3.06c 391d
I2 1.49c 0.62b 2.20b 3.00d 5.60ab 4.42b 419c
I3 1.82b 0.66ab 2.49a 3.72b 5.14b 4.86ab 456b
I4 2.08a 0.71a 2.59a 4.20a 6.41a 5.16a 505a
作物
Crop
处理
Treatment
苗期
Seedling
拔节期
Jointing
大喇叭口期
Bell-mouth
抽雄吐丝期
Heading and tasseling
灌浆期
Filling
成熟期
Maturity
总计
Total
夏玉米
Summer maize
I1 3.64c 5.06b 4.73b 6.34b 3.52b 2.03c 475c
I2 3.97b 5.01b 4.84b 7.06a 3.95a 2.26ab 507b
I3 3.94b 6.01a 4.92b 6.19b 3.42b 2.34a 505b
I4 4.11a 6.20a 6.54a 6.40b 3.84a 2.10bc 553a

表5

冬小麦-夏玉米ETc与0~30cm Ts及SWC的多元线性回归

作物
Crop
处理
Treatment
Ts (°C) SWC (%) 截距
Slope
R2
0cm 10cm 20cm 30cm 10cm 20cm 30cm
冬小麦
Winter wheat
I1 0.470 -2.252 4.807 -2.781 0.034 -0.202 0.202 -2.36 0.744**
I2 0.275 -1.862 4.240 -2.500 -0.001 0.212 -0.367 0.242 0.825**
I3 0.049 0.232 0.459 -0.492 -0.033 0.037 -0.104 1.656 0.839**
I4 0.272 -2.569 6.275 -3.827 -0.198 0.531 -0.513 6.307 0.817**
夏玉米
Summer maize
I1 -0.459 3.093 -5.187 3.217 -0.073 0.033 -0.013 -14.642 0.752**
I2 0.249 0.168 0.513 -0.291 -0.01 0.071 0.052 -14.199 0.648**
I3 -0.394 1.552 -1.398 0.871 0.005 -0.041 0.067 -12.047 0.653**
I4 -1.042 3.045 -1.145 -0.264 0.045 0.059 -0.041 -11.734 0.681**
[1] 王子申, 蔡焕杰, 虞连玉, 等. 基于SIMDualKc模型估算西北旱区冬小麦蒸散量及土壤蒸发量. 农业工程学报, 2016, 32(5):126-136.
[2] 李菲菲, 饶良懿, 吕琨珑, 等. Priestley-Taylor模型参数修正及在蒸散发估算中的应用. 浙江农林大学学报, 2013, 30(5):748-754.
[3] Qin A, Ning D, Liu Z, et al. Insentek sensor:An alternative to estimate daily crop evapotranspiration for maize plants. Water, 2019, 11:25.
doi: 10.3390/w11010025
[4] 袁小环, 杨学军, 陈超, 等. 基于蒸渗仪实测的参考作物蒸散发模型北京地区适用性评价. 农业工程学报, 2014, 30(13):104-110.
[5] 赵龙. 区域土地利用-高时空分辨率蒸散发与土壤含水量分布遥感反演. 杨凌: 西北农林科技大学, 2018.
[6] 于庆峰, 苗庆丰, 史海滨, 等. 秸秆覆盖量对土壤温度和春玉米耗水规律及产量的影响. 水土保持研究, 2018, 25(3):111-116.
[7] 郑珍. 关中地区冬小麦水分产量效应及气候变化条件下产量响应模拟研究. 杨凌: 西北农林科技大学, 2016.
[8] 郝增超, 侯爱中, 张璇, 等. 干旱监测与预报研究进展与展望. 水利水电技术, 2020, 51(11):30-40.
[9] 张力, 陈阜, 雷永登. 黄淮海地区冬小麦-夏玉米生育期内水分供需时空变化特征. 中国农业大学学报, 2020, 25(4):1-10.
[10] Qin A, Ning D, Liu Z, et al. Structural equation modeling of soil moisture effects on evapotranspiration of maize in the North China Plain. National Academy Science Letters, 2020, 43:219-224.
doi: 10.1007/s40009-019-00849-3
[11] Qin A, Fang Y, Ning D, et al. Incorporation of manure into ridge and furrow planting system boosts yields of maize by optimizing soil moisture and improving photosynthesis. Agronomy, 2019, 9:865.
doi: 10.3390/agronomy9120865
[12] 方彦杰, 秦安振, 雍蓓蓓. 种植模式和补灌对玉米生长发育及产量的影响. 节水灌溉, 2019(6):30-34.
[13] Steele D, Stegman E, Gregor B. Field comparison of irrigation scheduling methods for corn. Transactions of the ASAE, 1994, 37:1197-1203.
doi: 10.13031/2013.28194
[14] 郑建华. 西北内陆旱区经济作物节水响应机理及灌溉制度优化模拟研究. 北京: 中国农业大学, 2014.
[15] Tang J, Han W, Zhang L. UAV multispectral imagery combined with the FAO-56 dual approach for maize evapotranspiration mapping in the North China Plain. Remote Sensing, 2019, 11:2519.
doi: 10.3390/rs11212519
[16] 王敏政, 周广胜. 基于地面遥感信息与气温的夏玉米土壤水分估算方法. 应用生态学报, 2016, 27(6):1804-1810.
doi: 10.13287/j.1001-9332.201606.016
[17] Allen R, Pereira L, Raes D, et al. Crop evapotranspiration:Guidelines for computing crop water requirement. Rome: FAO Irrigation and Drainage Paper 56, 1998:300-310.
[18] 汤鹏程, 徐冰, 高占义, 等. 西藏高海拔地区气象数据缺失条件下的ET0计算研究. 水利学报, 2017, 48(9):1055-1063.
[19] 蔡甲冰, 刘钰, 雷廷武, 等. 根据天气预报估算参照腾发量. 农业工程学报, 2005, 21(11):11-15.
[20] 刘晓英, 李玉中, 王庆锁. 几种基于温度的参考作物蒸散量计算方法的评价. 农业工程学报, 2006, 22(6):12-18.
[21] 周浩勇. 冬小麦灌溉需水量适宜估算模式的研究. 北京: 中国农业科学院, 2016.
[22] Qin A, NinG D, Liu Z, et al. Determining threshold values for a crop water stress index-based center pivot irrigation with optimum grain yield. Agriculture, 2021, 11:958.
doi: 10.3390/agriculture11100958
[23] 刘战东, 刘祖贵, 南纪琴, 等. 高产条件下夏玉米需水特征及农田水分管理. 灌溉排水学报, 2013, 32(4):6-10.
[24] 董朝阳, 刘志娟, 杨晓光. 北方地区不同等级干旱对春玉米产量影响. 农业工程学报, 2015, 31(11):157-164.
[25] 侯慧芝, 吕军峰, 郭天文, 等. 西北黄土高原半干旱区全膜覆土穴播对土壤水热环境和小麦产量的影响. 生态学报, 2014, 34(19):5503-5513.
[26] 田建柯, 张富仓, 强生才, 等. 灌水量及灌水频率对玉米生长和水分利用的影响. 排灌机械工程学报, 2016, 34(9):815-822.
[27] 路倩倩, 何洪林, 朱先进, 等. 中国东部典型森林生态系统蒸散及其组分变异规律研究. 自然资源学报, 2015, 30(9):1436-1448.
[28] Moran M, Scott R, Keefer T, et al. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature. Agricultural and Forest Meteorology, 2009, 149(1):59-72.
doi: 10.1016/j.agrformet.2008.07.004
[1] 温蕊, 陈茜午, 赵雅杰, 贾祎明, 卢旭东, 张继宏, 李焕春, 赵沛义, 张永虎. 西北黄土高原旱作区不同地膜覆盖种植模式谷田水温效应及水分利用效率研究[J]. 作物杂志, 2022, (6): 111–117
[2] 杨志楠, 黄金文, 韩凡香, 李亚伟, 马建涛, 柴守玺, 程宏波, 杨德龙, 常磊. 秸秆带状覆盖对西北雨养区马铃薯农田土壤温度及产量的影响[J]. 作物杂志, 2022, (1): 196–204
[3] 刁生鹏,高日平,高宇,任永峰,赵沛义,袁伟,高学峰. 内蒙古黄土高原秸秆还田对玉米农田土壤水热状况及产量的影响[J]. 作物杂志, 2019, (6): 83–89
[4] 樊丽琴,李磊,吴霞. 不同油葵种植方式对银北灌区盐碱地土壤温度、含水率和电导率的影响[J]. 作物杂志, 2019, (6): 127–133
[5] 孙梦媛,刘景辉,杨彦明. 全膜单垄垄上微沟播种栽培方式对旱作马铃薯生长及产量的影响[J]. 作物杂志, 2016, (5): 101–105
[6] 包开花, 蒙美莲, 陈有君, 等. 覆膜方式和保水剂对旱作马铃薯土壤水热效应及出苗的影响[J]. 作物杂志, 2015, (4): 102–108
[7] 孙贵臣, 冯瑞云, 陈凌, 等. 深松免耕种植对上壤环境及玉米产量的影响[J]. 作物杂志, 2014, (4): 129–132
[8] 张铁楠, 付驰, 李晶, 顾万荣, 许为政, 芦玉双, 魏湜. 基于寒地春小麦AquaCrop与WOFOST模型适应性验证分析[J]. 作物杂志, 2013, (3): 121–126
[9] 高婕, 李倩, 刘景辉, 崔凤娟, 李立军, 刘兵, 王健康. 免耕留茬对内蒙古后山地区油菜田土壤呼吸和水热变化的影响[J]. 作物杂志, 2012, (3): 81–85
[10] 刘晓伟, 何宝林, 康恩祥, 郭天文. 播种方式对旱区冬小麦产量及土壤水分、土壤温度的影响[J]. 作物杂志, 2011, (5): 77–81
[11] 侯慧芝, 吕军峰, 张绪成, 等. 陇中半干旱区全膜覆土穴播小麦的土壤水分及产量效应[J]. 作物杂志, 2010, (1): 21–25
[12] 林蔚刚, 吴俊江, 董德健, 等. 阿根廷作物免耕体系的研究现状[J]. 作物杂志, 2007, (4): 83–85
[13] 林治安, 许建新, 马兴林, 等. 优质青绿饲草品种及其高效种植模式[J]. 作物杂志, 2004, (4): 36–38
[14] 郭振华, 曹国立. 优质高蛋白大豆栽培技术[J]. 作物杂志, 2003, (3): 31–31
[15] 卢淑雯. 节能型日光温室冬春茬西芹高效栽培技术[J]. 作物杂志, 2002, (2): 23–24
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!