作物杂志,2024, 第6期: 186–193 doi: 10.16035/j.issn.1001-7283.2024.06.025

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

叶锈病不同危害等级下咖啡叶片的光合特征和抗逆性酶比较

付兴飞1,2(), 李亚麒1, 喻好好1, 李贵平1, 毕晓菲1, 李亚男1, 胡发广1(), 邰杰3   

  1. 1云南省农业科学院热带亚热带经济作物研究所,678000,云南保山
    2保山市隆阳区佐园咖啡有限公司,678000,云南保山
    3保山市隆阳区经济作物技术推广站,678000,云南保山
  • 收稿日期:2024-02-27 修回日期:2024-04-11 出版日期:2024-12-15 发布日期:2024-12-05
  • 通讯作者: 胡发广,主要从事热带亚热带经济作物有害生物综合防控研究,E-mail:hfg2632@126.com
  • 作者简介:付兴飞,研究方向为热带亚热带经济作物有害生物综合防控,E-mail:1161003575@qq.com
  • 基金资助:
    云南省科技厅科技计划项目农业联合专项(202301BD070001-076);保山市科技计划项目(2022zc01)

Comparison of Photosynthetic Characteristics and Resistant Enzymes in Coffee Leaves under Different Levels of Leaf Rust Damage

Fu Xingfei1,2(), Li Yaqi1, Yu Haohao1, Li Guiping1, Bi Xiaofei1, Li Yanan1, Hu Faguang1(), Tai Jie3   

  1. 1Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000,Yunnan, China
    2Baoshan Longyang District Zuoyuan Coffee Co., Ltd., Baoshan 678000, Yunnan, China
    3Baoshan Longyang Economic Crop Technology Promotion Station, Baoshan 678000, Yunnan, China
  • Received:2024-02-27 Revised:2024-04-11 Online:2024-12-15 Published:2024-12-05

摘要:

为探讨小粒咖啡侵染叶锈病后的生理生化变化,对8个叶锈病危害等级下叶片的落叶率(LF)、叶绿素相对含量(SPAD)、光合参数及4种抗逆性酶活性进行测定,分析叶锈病不同危害等级对咖啡叶片生理落叶、光合作用及抗逆性的影响。结果表明,LF随着叶锈病感染面积的增加而增加,SPAD随着叶锈病感染面积的增加先升高后降低。危害等级Ⅲ的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)最大,危害等级Ⅶ的胞间CO2摩尔分数(Ci)最大。危害等级0的水分利用率(EWU)最高,与危害等级Ⅰ间差异不显著,但显著高于危害等级Ⅱ~Ⅶ。危害等级Ⅳ的光能利用率(LUE)最高,与危害等级Ⅱ和Ⅲ间差异不显著,但显著高于其余5个危害等级的。危害等级0~Ⅵ下超氧化物歧化酶活性变化不明显;受咖啡叶锈病感染后,均能一定程度提高过氧化物酶活性;几丁质酶(CHT)和β-1, 3-葡聚糖酶(β-1, 3-GA)的活性均随危害等级的增加先升高后降低,在危害等级Ⅲ下CHT和β-1, 3-GA的活性最大。综合分析表明,危害等级Ⅲ下咖啡叶片具有更高的光合作用和抗逆性,落叶相对较少。

关键词: 叶锈病, 落叶率, 光合特征, 抗逆性酶, 小粒咖啡

Abstract:

In order to investigate the physiological and biochemical changes of Coffea arabica after infected by leaf rust, the leaf defoliation rate (LF), relative chlorophyll content (SPAD), photosynthetic parameters, and four stress resistant enzyme activities were measured to analyze the effects of different levels of coffee leaf rust on physiological defoliation, photosynthesis, and stress resistance of coffee leaves under eight levels of leaf rust. The results showed that the LF increased with the increase of coffee leaf rust infection area, and SPAD first increased and then decreased with the increase of leaf rust infection area. The net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate of coffee leaves (Tr) were the highest at damage level III. The intercellular CO2 molar fraction of coffee leaves was highest at damage level VII. The water use efficiency (EWU) was highest at hazard level 0, and there was no significant difference between it and hazard level I, but it was significantly higher than levels II-VII. The light energy utilization efficiency (LUE) of hazard level IV was the highest, which was not significantly different from hazard levels II and III, but significantly higher than the other five hazard levels. The change in superoxide dismutase activity was not significant in hazard levels 0-VI. After being infected with coffee leaf rust, the activity of peroxidase could be increased to a certain extent; chitinase (CHT) and β-1, 3-glucanase (β-1, 3-GA) activities of all increased first and then decreased with the increase of hazard level. The activities of CHT, β-1, 3-GA were highest at hazard level III. Comprehensive analysis showed that under hazard level III, coffee leaves had higher photosynthesis and stress resistance, with relatively fewer fallen leaves.

Key words: Leaf rust, Fallen leaf rate, Photosynthetic characteristics, Resistant enzyme, Coffea arabica

图1

叶锈病危害等级划分标准

图2

不同危害等级下咖啡落叶率 不同小写字母表示差异显著(P < 0.05)。下同。

图3

不同危害等级下的SPAD

表1

不同危害等级下咖啡叶片的光合参数

危害等级
Damage level
Pn
[μmol/(m2·s)]
Gs
[mol/(m2·s)]
Ci
(μmol/mol)
Tr
[mmol/(m2·s)]
EWU
(mmol/mol)
LUE
(mol/mmol)
0 9.50±1.88cd 0.08±0.01c 230.90±27.27c 1.43±0.23c 6.82±1.28a 1.14±0.26bc
15.58±2.14ab 0.14±0.03b 223.78±21.09c 3.17±0.53b 5.31±0.55ab 1.51±0.17bc
14.75±2.14bc 0.16±0.02b 243.00±27.88c 3.73±0.49b 4.34±0.72bc 1.56±0.33abc
20.65±3.48a 0.23±0.03a 267.44±27.04bc 5.56±0.48a 4.02±0.78bc 1.88±0.24ab
11.74±2.13bc 0.14±0.01b 273.60±19.55bc 3.96±0.40b 2.89±0.44cd 3.33±1.62a
11.49±1.51bcd 0.13±0.02b 252.70±21.44c 3.77±0.46b 3.20±0.45cd 1.14±0.21bc
6.08±1.16d 0.13±0.02b 326.44±13.05b 4.23±0.46b 1.52±0.25de 0.48±0.10bc
0.20±0.10e 0.13±0.01b 438.00±12.22a 4.15±0.37b 0.05±0.03e 0.02±0.01c

图4

不同危害等级下SOD的活性

图5

不同危害等级下POD活性

图6

不同危害等级下CHT活性

图7

不同危害等级下β-1, 3-GA活性

图8

咖啡叶片光合作用与抗逆性酶各指标的相关性分析 “*”表示达显著相关水平(P < 0.05)。

表2

不同危害等级下咖啡叶片的综合得分

危害等级
Damage
level
主成分得分
Score of principal components
综合得分
Comprehensive
score
排序
Rank
PC1 PC2
0 1.17 -3.99 -0.65 6
1.56 -0.85 0.53 4
1.73 0.16 0.96 2
1.93 2.94 1.94 1
1.19 1.03 0.95 3
-0.21 0.20 -0.04 5
-2.11 0.47 -0.95 7
-5.23 0.03 -2.74 8
[1] 吴伟怀, 刘宝慧, 汪全伟, 等. 咖啡叶锈病菌单管巢式PCR检测体系的建立与应用. 特产研究, 2023, 45(5):1-7,15.
[2] 云南省咖啡产业专家组. 2021年度云南省咖啡产业发展报告. (2022-07-09) [2024-02-27]. https://nync.yn.gov.cn/uploadfile/s38/2022/0811/20220811110742328.pdf.
[3] Hugy I, Degaard C V. Becoming ʻWildʼ at the intersection of knowledges: Coffee rust crisis in Costa Rica. Ethnos, 2021, 86 (2):349-369.
[4] Salcedo-sarmiento S, Aucique-pérez C E, Silveira P R, et al. Elucidating the interactions between the rust Hemileia vastatrix and a Calonectria mycoparasite and the coffee plant. iScience, 2021, 24(4):102352.
[5] 付兴飞, 胡发广, 程金焕, 等. 保山精品咖啡产区小粒种咖啡病虫害种类调查及防治对策. 林业调查规划, 2023, 48(4):110-114.
[6] 付兴飞, 胡发广, 黄家雄, 等. 干热区海拔梯度对咖啡叶锈病影响. 热带生物学报, 2024, 15(3):337-342.
[7] 白学慧, 萧自位, 马关润, 等. 云南咖啡锈菌生理小种鉴定. 热带农业科技, 2023, 46(2):83-89.
[8] Zhang C J, Chen G X, Gao X X, et al. Photosynthetic decline in flag leaves of two field-grown spring wheat cultivars with different senescence properties. South African Journal of Botany, 2006, 72(1):15-23.
[9] Tsialtas J T, Theologidou G S, Karaoglanidis G S. Effects of pyraclostrobin on leaf diseases, leaf physiology, yield and quality of durum wheat under Mediterranean conditions. Crop Protection, 2018, 113:48-55.
[10] 常春义, 曹元, Ghulam M, 等. 白粉病对小麦光合特性的影响及病害严重度的定量模拟. 中国农业科学, 2023, 56(6):1061-1073.
doi: 10.3864/j.issn.0578-1752.2023.06.004
[11] 刘素莎, 丁小涛, 奚丹丹, 等. 不结球白菜侵染霜霉病后的生理生化响应. 分子植物育种, 2024, 22(8):2693-2698.
[12] 黄丽芳, 龙宇宙, 李金芹, 等. 低温胁迫对小粒种咖啡幼苗光合及叶绿素荧光特性的影响. 分子植物育种, 2024, 22(14):4706-4714.
[13] 萧自位, 白学慧, 肖兵, 等. 不同遮荫环境对小粒种咖啡光合作用的影响. 热带农业科技, 2023, 46(2):69-74.
[14] 胡发广, 刘红明, 毕晓菲, 等. 云南干热河谷区7个小粒咖啡叶片光合特性日变化的研究. 江西农业学报, 2020, 32(10):52-56.
[15] 胡发广, 刘红明, 毕晓菲, 等. 不同海拔的小粒咖啡光合特性日变化研究. 江西农业学报, 2022, 34(5):53-58.
[16] 杨庆丽, 张毅, 祁天涛, 等. 大麦叶斑病菌侵染过程及几丁质酶和β-1, 3-葡聚糖酶活性变化的研究. 甘肃农业大学学报, 2023, 58(1):122-129.
[17] Mojtaba M, Arthur L K. β-1,3-glucanase and chitinase activities in soybean root nodules. Journal of Plant Physiology, 2002, 159(3):245-256.
[18] 袁汇涛, 张云霞, 向梅梅, 等. 花生黑腐病抗病品种筛选及相关酶活性测定. 核农学报, 2021, 35(1):2258-2266.
[19] Kini K R, Vasanthi N S, Shetty H S. Induction of β-1, 3- glucanase in seedlings of pearl millet in response to infection by sclerospora graminicola. European Journal of Plant Pathology, 2000, 106(3):267-274.
[20] Belan L L, Belan L L, Rafael A D, et al. Standard area diagram with color photographs to estimate the severity of coffee leaf rust in Coffea canephora. Crop Protection, 2020, 130:105077.
[21] 郝紫微, 吴潇, 戴雨沁, 等. 赤霉素延缓‘丰水’梨落叶的生理机制. 南京农业大学学报, 2021, 44(1):61-67.
[22] 陶凌剑, 涂淑萍, 金莉颖, 等. 光照强度对圆齿野鸭椿叶片光合特征和叶绿素荧光参数的影响. 经济林研究, 2022, 40(2):225-231.
[23] 刘蔚漪, 辉朝茂, 刘广路, 等. 煤污病害对灰金竹叶片光合及生理生态特性的影响. 林业科学研究, 2020, 33(4):160-168.
[24] 丁婷婷, 王晓瑜, 段廷玉. 病害对豆科牧草光合作用、营养成分及根瘤的影响. 草业科学, 2019, 36(1):152-160.
[25] 李梦霞, 蔡露, 曾心美, 等. 不同品种(品系)木芙蓉对盐胁迫的响应. 北方园艺, 2022(15):67-73.
[26] Mauch F, Mauch-Mani B, Boller T. Antifungal hydrolases in pea tissue: II: inhibition of fungal growth by combinations of chitinase and β-1, 3-glucanase. Plant Physiology, 1988, 88(3):936-942.
doi: 10.1104/pp.88.3.936 pmid: 16666407
[27] 史娟, 胡景江, 王红玲, 等. 霜霉病菌对葡萄细胞壁水解酶的诱导作用与寄主抗病性的关系. 西北林学院学报, 2002(1):42-44.
[28] 龙艳玲, 苏基平, 胡军华, 等. 柑桔褐斑病菌侵染对不同抗性柑桔种质防御酶活性的影响. 中国南方果树, 2018, 47(1):6-11,16.
[29] 付兴飞, 胡发广, 李贵平, 等. 小粒咖啡有害生物综合防控. 北京: 中国农业出版社, 2023.
[1] 闫晓翠, 段振盈, 杨华丽, 姚占军, 李在峰. 小麦品种周麦22抗叶锈病的QTL定位[J]. 作物杂志, 2022, (2): 69–74
[2] 邓贺明, 胡亚敏, 冯家春, 等. 国审小麦新品种“阜麦936”的选育及栽培技术[J]. 作物杂志, 2006, (2): 21–21
[3] 牛本永, 周玉琴, 朱衣成, 等. 开麦18的选育及其优良特性[J]. 作物杂志, 2006, (1): 34–34
[4] 崔淑兰, 庞家智. 3个小麦矮抗亲本特性[J]. 作物杂志, 1994, (4): 2–2
[5] 李英婵, 庞家智. 5个冬小麦品种资源特性[J]. 作物杂志, 1990, (2): 17–17
[6] 卢志民. 冀麦27[J]. 作物杂志, 1988, (4): 5–5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!