作物杂志,2025, 第1期: 8388 doi: 10.16035/j.issn.1001-7283.2025.01.010
高玉龙1(), 赵璐1, 王丙武1(
), 孔光辉1, 王亚辉1, 刘剑金2, 段杰3, 吴兴富1, 李青2, 者开明3
Gao Yulong1(), Zhao Lu1, Wang Bingwu1(
), Kong Guanghui1, Wang Yahui1, Liu Jianjin2, Duan Jie3, Wu Xingfu1, Li Qing2, Zhe Kaiming3
摘要:
烟碱是栽培烟草中重要的化学成分之一,深刻影响烟叶质量。为了培育高烟碱含量的烟草新材料,在我国主栽品种云烟87的甲基磺酸乙酯(EMS)突变体库中筛选烟碱合成负调控因子基因NtJAZ1的突变体材料。结果表明,在突变体库中筛选获得了12个突变体材料,其中10个突变导致NtJAZ1氨基酸变化,1份突变位点位于内含子,1个无义突变。温室种植纯合突变体材料,现蕾期检测整株叶片烟碱含量,其中2个株系(J8和J11)的烟碱含量显著高于对照。J11 I-1和J11 Ⅳ-1打顶后其烟碱含量分别比对照提高48%和58%。qRT-PCR表明,NtPMT1a和NtQPT基因在突变体J11 I-1根中的表达水平显著升高。综上,筛选获得的高烟碱突变体材料J11不涉及转基因成分,可为培育高烟碱含量烤烟新品种提供种质资源。
[1] | Dawson R F. Nicotine synthesis in excised roots. American Journal of Botany, 1942, 29:813-815. |
[2] | Dawson R F. Accumulation of nicotine in reciprocal grafts of tomato and tobacco. American Journal of Botany, 1942, 29:66-71. |
[3] | Katoh A, Ohki H, Inai K, et al. Molecular regulation of nicotine biosynthesis. Plant Biotechnology, 2005, 22(5):389-392. |
[4] |
Wagner R, Feth F, Wagner K G. Regulation in tobacco callus of enzyme activities of the nicotine pathway II. The pyridine- nucleotide cycle. Planta, 1986, 168(3):408-413.
doi: 10.1007/BF00392369 pmid: 24232153 |
[5] |
Dewey R E, Xie J. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry, 2013, 94:10-27.
doi: 10.1016/j.phytochem.2013.06.002 pmid: 23953973 |
[6] | Baldwin I T. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(14):8113-8118. |
[7] | Xu B, Timko M P. Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Molecular Biology, 2004, 55(5):743-761. |
[8] |
Baldwin I T, Schmelz E A, Ohnmeiss T E. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. Journal of Chemical Ecology, 1994, 20(8):2139-2157.
doi: 10.1007/BF02066250 pmid: 24242736 |
[9] |
Shoji T, Yamada Y, Hashimoto T. Jasmonate induction of putrescine N-methyltransferase genes in roots of Nicotiana sylvestris. Plant and Cell Physiology, 2000, 41(7):831-839.
doi: 10.1093/pcp/pcd001 pmid: 10965939 |
[10] | Shoji T, Ogawa T, Hashimoto T. Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes. Plant and Cell Physiology, 2008, 49(7):1003-1012. |
[11] | Shoji T, Hashimoto T. Tobacco MYC2 regulates jasmonate- inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant and Cell Physiology, 2011, 52(6):1117-1130. |
[12] | Jiang G Q, Yao X F, Liu C M. A simple CELI endonuclease- based protocol for genotyping both SNPs and InDels. Plant Molecular Biology Reporter, 2013, 31(6):1325-1335. |
[13] | 国家烟草专卖局. 烟草及烟草制品烟碱、降烟碱、新烟碱、麦斯明和假木贼碱的测定气相色谱-质谱联用法:YC/T 383- 2010. 北京,中国标准出版社,2010. |
[14] |
Wang B, Lewis R S, Shi J L, et al. Genetic factors for enhancement of nicotine levels in cultivated tobacco. Scientific Reports, 2015, 5:17360.
doi: 10.1038/srep17360 pmid: 26626731 |
[15] | Chini A, Fonseca S, Chico J M, et al. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. The Plant Journal for Cell and Molecular Biology, 2009, 59(1):77-87. |
[16] | Yang Y P, Guo J, Yan P C, et al. Transcriptome profiling identified multiple jasmonate ZIM-domain proteins involved in the regulation of alkaloid biosynthesis in tobacco BY-2 cells. Plant Molecular Biology Reporter, 2014, 33(1):153-166. |
[17] | Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 2007, 448(7154):666-671. |
[18] | Zhao C Y, Geng X Q, Yang Y P, et al. NtAIDP1, a novel NtJAZ interacting protein, binds to an AT-rich region to activate the transcription of jasmonate-inducible genes in tobacco. Journal of Plant Physiology, 2021, 263:153452. |
[19] | Li Z C, Luo X, Ou Y, et al. JASMONATE-ZIM DOMAIN proteins engage Polycomb chromatin modifiers to modulate Jasmonate signaling in Arabidopsis. Molecular Plant, 2021, 14(5):732-747. |
[1] | 马俊美, 窦敏, 刘弟, 杨秀华, 杨勇, 年夫照, 刘雅婷, 李永忠. 烤烟与玉米间作种植对根际土壤养分及作物生长的影响[J]. 作物杂志, 2025, (1): 227234 |
[2] | 张瑛, 王海洋, 姜林, 郭学清, 钟小丽, 张星, 卢敏娇, 姬小明, 杨晓朋, 吴树松. 长汀烟区植烟土壤肥力适宜性综合评价及空间分布研究[J]. 作物杂志, 2024, (6): 171178 |
[3] | 李新如, 谢晏芬, 朱宣全, 王戈, 白羽祥, 杜宇, 周鹏, 赵宇婷, 朱红琼, 杨帆, 肖志文, 王文波, 方志鹏, 韩家宝, 王娜. 不同前作植烟土壤质量评价及其与烟叶质量的相关性研究[J]. 作物杂志, 2024, (5): 167174 |
[4] | 江智敏, 张仲文, 章程, 郑宏斌, 王卫民, 李思军, 侯建林, 邓小强, 吴文信, 朱林, 邓永晟, 邓小华. 稻茬烤烟下部4片烟叶一次性采收成熟度研究[J]. 作物杂志, 2024, (2): 129138 |
[5] | 李思军, 毕一鸣, 侯建林, 吴文信, 邓小强, 江智敏, 田雨农, 郝贤伟, 章程, 朱林, 夏冰, 邓小华. 适宜稻茬烤烟中部6片烟叶一次性采收的密集烤房烘烤工艺研究[J]. 作物杂志, 2024, (2): 158164 |
[6] | 段俊雅, 赵园园, 韦建玉, 王德勋, 王政, 王婷婷, 史宏志. 叶面喷施聚天冬氨酸对烤烟生长及产量和质量的影响[J]. 作物杂志, 2023, (6): 195201 |
[7] | 刘晨, 杨明峰, 杨龙, 张楠, 于涛. 双行凹垄模式下宽窄行配置对烤烟上部叶生长发育及质量的影响[J]. 作物杂志, 2023, (5): 151156 |
[8] | 刘晓敏, 徐锐, 孙敬国, 赵凡冲, 司振兴, 梁郅哲, 许自成, 韩丹. 井窖深度与覆盖方式对窖内气热环境及烤烟生长和产量的影响[J]. 作物杂志, 2023, (5): 157163 |
[9] | 段俊雅, 赵园园, 彭智良, 张永锋, 段卫东, 杨青玺, 王松岭, 陈小龙, 史宏志. 陕南烤烟上部叶一次性采收时期对烟叶质量的影响[J]. 作物杂志, 2023, (5): 231237 |
[10] | 贾国涛, 王晓瑜, 孙溢明, 聂聪, 何静宇, 冯颖杰, 马胜涛, 崔廷, 程东旭, 姚倩, 李悦, 张子颖, 王宝林, 刘惠民. 我国八大香型生态区域烤烟游离氨基酸含量与烟叶品质的关系分析[J]. 作物杂志, 2023, (3): 195199 |
[11] | 单嘉烨, 张学伟, 鄢敏, 杨建, 王飞, 何佶弦, 胡刚, 王宇辰, 景延秋, 雷强. 喷施稀土微肥对干旱胁迫下烤烟生长及生理特性的影响[J]. 作物杂志, 2023, (2): 100105 |
[12] | 韩玉环, 刘晨, 杨龙, 于涛. 打顶时期和留叶数对山东烤烟上部叶生长发育的影响[J]. 作物杂志, 2023, (2): 157162 |
[13] | 王悦华, 周俊学, 马宜林, 马君红, 王艳芳, 赵世民, 申洪涛, 李友军, 刘领. 烤烟品系LY1306“上六片”生理采收成熟度对烤烟代谢和品质的影响[J]. 作物杂志, 2023, (2): 171177 |
[14] | 张翼飞, 祖庆学, 聂忠扬, 林松, 饶陈, 成志军. 谷氨酸对烤烟氮素营养贡献及生理特性研究[J]. 作物杂志, 2023, (2): 186192 |
[15] | 王德权, 刘洋, 刘江, 陈克玲, 王艺, 杜传印, 杜玉海, 马兴华. 沟垄集雨耕作技术研究进展及其在烤烟生产中的应用展望[J]. 作物杂志, 2023, (1): 15 |
|