作物杂志,2025, 第4期: 95–103 doi: 10.16035/j.issn.1001-7283.2025.04.012

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

冷胁迫下果蔗叶片转录组分析及茉莉酸信号传导基因挖掘

陈明辉1(), 徐豫2, 黄志强2, 王俊青1, 张保青3()   

  1. 1平顶山学院化学与环境工程学院/河南省生态经济型木本植物种质创新与利用重点实验室,467000,河南平顶山
    2平顶山市林业局,467000,河南平顶山
    3广西甘蔗遗传改良重点实验室/广西农业科学院甘蔗研究所/农业农村部广西甘蔗生物技术与遗传改良重点实验室,530007,广西南宁
  • 收稿日期:2024-04-22 修回日期:2024-05-25 出版日期:2025-08-15 发布日期:2025-08-12
  • 通讯作者: 张保青,研究方向为甘蔗高效栽培技术与理论,E-mail:zbqsxau@126.com
  • 作者简介:陈明辉,研究方向为果蔗抗逆栽培技术与理论,E-mail:cmh_abc@126.com
  • 基金资助:
    河南省科技厅科技攻关计划项目(222102110448);河南省中原学者工作站(ZYGZZ2021048);广西甘蔗遗传改良重点实验室开放性研究项目(19-185-24-K-01-01);广西甘蔗遗传改良重点实验室开放性研究项目(21-238-16-A-01-02);中国科学院华南植物园重点支持项目(E36101)

Analysis of the Transcriptome and Jasmonic Acid Signal Transduction in Chewing Cane Leaves under Cold Stress

Chen Minghui1(), Xu Yu2, Huang Zhiqiang2, Wang Junqing1, Zhang Baoqing3()   

  1. 1School of Chemistry and Environmental Engineering, Pingdingshan University / Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan 467000, Henan, China
    2Pingdingshan Forestry Bureau, Pingdingshan 467000, Henan, China
    3Guangxi Key Laboratory of Sugarcane Genetic Improvement / Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences / Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, Guangxi, China
  • Received:2024-04-22 Revised:2024-05-25 Online:2025-08-15 Published:2025-08-12

摘要:

探讨冷胁迫(0 ℃)条件下果蔗基因表达谱的变化,为果蔗抗寒育种、引种及栽培提供理论依据。采用高通量测序平台对对照组(25 ℃)和冷胁迫处理组(0 ℃)条件下果蔗进行转录组测序。对测序数据进行分析,筛选响应冷胁迫的茉莉酸代谢途径关键基因,对鉴定出的重要基因进行表达量的qRT-PCR验证。结果表明,低温胁迫处理后,2组样品通过筛选共获得321个差异表达基因(DEGs),其中167个基因上调,154个基因下调。GO功能富集分析显示,DEGs显著富集于催化活性、结合、代谢过程、细胞过程和细胞器等条目。KEGG途径富集分析发现,角质和木栓质合成、光合作用、脂肪酸代谢、淀粉和蔗糖代谢以及植物激素信号转导等为果蔗响应冷胁迫的重要代谢通路。qRT-PCR分析表明,冷胁迫后果蔗茉莉酸代谢途径相关基因SoPYL1、SoOPCL1、SoAOC1、SoLOX3、SoAOS1SoMYC2均上调表达,该结果与转录组测序变化趋势相似,同时进一步证实了RNA-seq数据的准确性。

关键词: 果蔗, 转录组测序, 冷胁迫, 茉莉酸代谢途径

Abstract:

This study investigates gene expression of chewing cane under cold stress (0 ℃), aiming to provide a theoretical basis for cold-resistant breeding, introduction, and cultivation. The high-throughput sequencing platform was used to perform transcriptome sequencing in chewing cane under control group (25 ℃) and cold stress treatment group (0 ℃). Sequencing data were analyzed to screen the key genes of jasmonic acid metabolism pathway in chewing respond to cold stress, and the expression levels of the identified important genes were verified by qRT-PCR. The results showed that after low-temperature stress treatment, a total of 321 differentially expressed genes (DEGs) were screened from the two groups of samples, among which 167 were upregulated and 154 were downregulated. Gene Ontology (GO) functional enrichment analysis showed that DEGs was significantly enriched in entries such as catalytic activity, binding, metabolic processes, cellular processes and organelles. KEGG pathway enrichment analysis showed that cutin and suberine biosynthesis, photosynthesis, fatty acid metabolism, starch and sucrose metabolism, and plant hormone signal transduction were important metabolic pathways in response to cold stress in chewing cane. qRT-PCR analysis showed that genes related to the jasmonic acid metabolic pathway (SoPYL1, SoOPCL1, SoAOC1, SoLOX3, SoAOS1, and SoMYC2) were all upregulated after cold stress in chewing cane. This result is similar to the trend of transcriptome sequencing changes and further confirms the accuracy of RNA-seq data.

Key words: Chewing cane, Transcriptome sequencing, Cold stress, Jasmonic acid metabolism pathway

表1

qRT-PCR引物序列

基因ID Gene ID 基因名称Gene name 正向引物Forward primer (5'-3') 反向引物Reverse primer (5'-3')
TRINITY_DN22868_c0_g1 SoPYL1 CTGCTGTTTATTGGCAGGGC CGAGAGGCACCAAGTGGATT
TRINITY_DN34725_c1_g1 SoOPCL1 TTGTCCCAGGCTATCCCCAGTC GGCTGATAAGAGAAAGCAACGC
TRINITY_DN6267_c0_g1 SoAOC1 CCGGTGGCAAATCAGGTATGT TGTCAGTCCAAGGAGCGTACCT
TRINITY_DN13714_c0_g1 SoLOX3 AGGCAGGGCTCTTTGACATTAC TCTGACCACTCCAGCCATAGCC
TRINITY_DN23021_c3_g1 SoAOS1 GAGTTTGTGCCTGATAGATTCGT GCTTGTTACTTACTGTCGGGCT
TRINITY_DN19998_c0_g1 SoMYC2 GTGTGTGTAGAGCGTGGTTGAT TGGAGGTGTAACCAGATGCTAT
actin 内参基因 TTACGGAAACATCGTCCTCAG GAATAGACCCTCCAATCCAAAC

表2

转录组测序数据和质量检查

样品名称
Sample name
读取数量
Reads count
碱基数量
Base number
GC含量
GC content (%)
Q30
(%)
CK-1 24 115 557 6 616 823 305 45.38 93.75
CK-2 23 965 241 6 941 153 971 45.25 94.93
CK-3 24 120 417 7 015 779 736 45.61 93.96
LT-1 23 413 153 6 994 627 319 44.89 94.67
LT-2 24 179 352 6 631 567 115 44.76 94.33
LT-3 23 956 726 6 972 364 824 45.37 93.84

图1

差异表达基因(DEGs)分类分析 (a) 基因本体(GO)分类分析;(b) DEGs MA图;(c) DEGs相关聚类热图,红色表示高表达水平,蓝色表示低表达水平。

图2

注释到COG数据库中的Unigene

图3

差异表达基因的KEGG富集分析

图4

差异表达基因的转录组表达量与qRT-PCR验证 不同小写字母表示差异显著(P < 0.05)。

[1] Shi Y T, Ding Y L, Yang S H. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant & Cell Physiology, 2015, 56(1):7-15.
[2] 乌凤章, 王贺新, 徐国辉, 等. 木本植物低温胁迫生理及分子机制研究进展. 林业科学, 2015, 51(7):116-128.
[3] Chinnusamy V, Zhu J, Zhu J K. Cold stress regulation of gene expression in plants. Trends Plant Science, 2007, 12(10):444-451.
[4] 张赞培, 谷月营, 尚旭岚, 等. 自然低温下23个青钱柳家系耐寒性初步评价. 南京林业大学学报(自然科学版), 2024, 48(4):85-92.
doi: 10.12302/j.issn.1000-2006.202208024
[5] 李丽, 达晓伟, 张悦婧, 等. 逆境胁迫对拟南芥细胞质、叶绿体和细胞外ATP水平的影响. 兰州大学学报(自然科学版), 2023, 59(6):846-852.
[6] 罗健东, 邱梦青, 周慧敏, 等. 菠萝AcZFP1的克隆及其在低温胁迫下的功能分析. 园艺学报, 2024, 51(3):495-508.
[7] 罗玉霞, 许涛, 戴倩, 等. 过表达F-box基因BoFBX117对甘蓝低温耐受性的影响. 农业生物技术学报, 2024, 32(1):70-79.
[8] Lyons R, Manners J M, Kazan K. Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Reports, 2013, 32(6):815-827.
doi: 10.1007/s00299-013-1400-y pmid: 23455708
[9] Weber H. Fatty acid-derived signals in plants. Trends in Plant Science, 2002, 7(5):217-224.
doi: 10.1016/s1360-1385(02)02250-1 pmid: 11992827
[10] Chini A, Monte I, Zamarreno A M, et al. An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nature Chemical Biology, 2018, 14(2):171-178.
doi: 10.1038/nchembio.2540 pmid: 29291349
[11] Ruan J J, Zhou Y X, Zhou M L, et al. Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences, 2019, 20(10):2479-2479.
[12] Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 2007, 100(4):681-697.
doi: 10.1093/aob/mcm079 pmid: 17513307
[13] Du S G, Cui M, Cai Y L, et al. Metabolomic analysis of chilling response in rice (Oryza sativa L.) seedlings by extractive electrospray ionization mass spectrometry. Environmental and Experimental Botany, 2020, 180:104231.
[14] Chang J J, Guo Y L, Zang Z X, et al. CBF-responsive pathway and phytohormones are involved in melatonin-improved photosynthesis and redox homeostasis under aerial cold stress in watermelon. Acta Physiologiae Plantarum, 2020, 42(10):109205-109242.
[15] Pan X X, Wu H, Hu M Y, et al. Global analysis of gene expression profiles in glutinous rice 89-1 (Oryza sativa L.) seedlings exposed to chilling stress. Plant Molecular Biology Reporter, 2021, 39(3):1-14.
[16] Li L J, Ma H Y, Lu X C, et al. TMT-Based quantitative proteomic revealed metabolic changes of Jasmonic acid in regulating the response of Malus baccata (L.) Borkh. roots to low root-zone temperature. Journal of Plant Growth Regulation, 2021, 41(2):1-16.
[17] Hu Y R, Jiang L Q, Wang F, et al. Jasmonate regulates the inducer of cbf expression C-repeat binding factor/DRE binding factor 1 cascade and freezing tolerance in Arabidopsis. Plant Cell, 2013, 25(8):2907-2924.
[18] 陈明辉, 张志录, 程世平, 等. 低温胁迫对不同品种果蔗膜脂过氧化及渗透调节物质的影响. 作物杂志, 2016(6):53-57.
[19] 陈明辉, 程世平, 张志录, 等. 不同品种果蔗幼苗对低温的生理响应及耐寒性评价. 华南农业大学学报, 2018, 39(2):40-46.
[20] 陈明辉, 张志录, 程世平, 等. 低温胁迫对4个果蔗品种幼苗根系活力和保护酶活性的影响. 江苏农业科学, 2018, 46(3):116-119.
[21] 陈明辉, 程世平, 张志录, 等. 低温胁迫下不同果蔗品种光合及荧光特性的变化及耐寒性评价. 热带作物学报, 2018, 39(3):465-471.
[22] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12):1-21.
[23] Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25(4),402-408.
[24] Varshney R K, May G D. Next-generation sequencing technologies: opportunities and obligations in plant genomics. Briefings in Functional Genomics, 2012, 11(1):1-2.
doi: 10.1093/bfgp/els001 pmid: 22345600
[25] 朱鹏锦, 宋奇琦, 谭秦亮, 等. 3个甘蔗品种响应低温胁迫的转录组分析. 广西科学, 2023, 30(2):267-276.
[26] 唐仕云, 杨丽涛, 李杨瑞, 等. 低温胁迫处理对甘蔗转录因子表达的影响. 分子植物育种, 2020, 18(7):2152-2160.
[27] 杨玉婷. 甘蔗响应低温胁迫的转录组分析与冷响应基因挖掘. 福州: 福建农林大学, 2022.
[28] 唐仕云, 杨丽涛, 李杨瑞. 低温胁迫下不同甘蔗品种的转录组比较分析. 生物技术通报, 2018, 34(12):116-124.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0522
[29] Yang H L, Guo Z J, Jiang L, et al. How the wild sugarcane resource Miscanthus floridulus responds to low-temperature stress: a physiological and transcriptomic analysis. Sugar Tech, 2022, 25(2):398-409.
[30] Dharshini S, Hoang N V, Mahadevaiah C, et al. Root transcriptome analysis of Saccharum spontaneum uncovers key genes and pathways in response to low-temperature stress. Environmental and Experimental Botany, 2020, 171:103935-103935.
[31] Park J W, Benatti T R, Marconi T, et al. Cold responsive gene expression profiling of sugarcane and Saccharum spontaneum with functional analysis of a cold inducible saccharum homolog of NOD26-like intrinsic protein to salt and water stress. PLoS ONE, 2015, 10(5):e0125810.
[32] 郭晋敏, 杨升, 刘星, 等. 秋茄低温胁迫转录组分析及脱落酸信号途径基因挖掘. 林业科学研究, 2023, 36(2):39-49.
[33] Yang H L, Wang T J, Yu X H, et al. Enhanced sugar accumulation and regulated plant hormone signalling genes contribute to cold tolerance in hypoploid Saccharum spontaneum. BMC Genomics, 2020, 21(1):507.
doi: 10.1186/s12864-020-06917-z pmid: 32698760
[34] Liu W H, Wang H Y, Chen Y P, et al. Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate. Biotechnology and Applied Biochemistry, 2017, 64(3):305-314.
doi: 10.1002/bab.1493 pmid: 26988377
[35] Ming R H, Zhang Y, Wang Y, et al. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. New Phytologist, 2020, 229(5):2730-2750.
[36] Zhao M L, Wang J N, Shan W, et al. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE 1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell and Environment, 2013, 36(1):30-51.
[37] Wasternack C, Hause B. Jasmonates:biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Annals of Botany, 2013, 111(6):1021-1058.
doi: 10.1093/aob/mct067 pmid: 23558912
[1] 窦维泽, 姜雯, 冯艺川, 金卓, 全雪丽, 吴松权. 过氧化氢诱导膜荚黄芪不定根毛蕊异黄酮葡萄糖苷积累的转录组分析[J]. 作物杂志, 2024, (1): 48–56
[2] 刘松涛, 田再民, 刘子刚, 高志佳, 张静, 贺东刚, 黄智鸿, 兰鑫. 基于转录组测序揭示玉米抗倒伏相关基因和代谢通路[J]. 作物杂志, 2023, (4): 31–37
[3] 吴启华, 陈迪文, 周文灵, 敖俊华, 黄莹, 黄振瑞, 李爽, 孙东磊. 高磷土壤减量施磷对果蔗磷肥利用效率和土壤酶活性的影响[J]. 作物杂志, 2021, (3): 91–98
[4] 李松,何毅波,卢曼曼,刘红坚,刘俊仙,刘丽敏,余坤兴,刘欣. 种植密度对桂果蔗1号产量性状及商品性状的影响[J]. 作物杂志, 2017, (4): 78–83
[5] 陈明辉,张志录,程世平,黄杏,张保青. 低温胁迫对不同品种果蔗膜脂过氧化及渗透调节物质的影响[J]. 作物杂志, 2016, (6): 53–57
[6] 杨洛淼, 王敬国, 刘化龙, 等. 寒地粳稻发芽期和芽期的耐冷性QTL定位[J]. 作物杂志, 2014, (6): 44–51
[7] 王文明, 李松, 杨柳, 等. 果蔗拔地拉(Badila)健康种苗在黄山款县的引种试验初报[J]. 作物杂志, 2013, (6): 140–142
[8] 李松, 韦昌联, 余坤兴, 钟寰, 康德贤, 刘红坚, 刘丽敏, 淡明, 卢曼曼, 杨柳, 刘俊仙. 缓释肥在脱毒果蔗生产上的应用效果[J]. 作物杂志, 2012, (5): 150–152
[9] 黄洪明, 吴美娟, 毛协勤. 蔗田间作鲜食春大豆效果与技术措施[J]. 作物杂志, 2011, (1): 94–96
[10] 易代勇, 张亦诚, 雷朝云, 等. 黔糖3号果蔗病害盛发原因分析及综合防控技术[J]. 作物杂志, 2007, (5): 63–66
[11] 叶燕平, 李杨瑞, 苏俊波, 等. 果蔗脱毒健康种苗试验初报[J]. 作物杂志, 2003, (6): 21–22
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!