作物杂志,2025, 第6期: 11–18 doi: 10.16035/j.issn.1001-7283.2025.06.002

• 专题综述 • 上一篇    下一篇

大豆响应荫蔽胁迫的分子机制研究进展

洪可盈(), 黄欣怡, 董觐闻, 韦加固, 任清铭, 熊飞()   

  1. 扬州大学生物科学与技术学院, 225009, 江苏扬州
  • 收稿日期:2025-01-16 修回日期:2025-06-23 出版日期:2025-12-15 发布日期:2025-12-12
  • 通讯作者: 熊飞,主要从事麦稻栽培生理研究,E-mail:feixiong@yzu.edu.cn
  • 作者简介:洪可盈,研究方向为大豆耐阴的分子机制,E-mail:15252576896@163.com
  • 基金资助:
    江苏省重点研发计划(BE2023335);江苏省大学生创新创业训练计划项目(202411117146Y)

Research Advances on Molecular Mechanism of Soybean Response to Shading Stress

Hong Keying(), Huang Xinyi, Dong Jinwen, Wei Jiagu, Ren Qingming, Xiong Fei()   

  1. College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2025-01-16 Revised:2025-06-23 Online:2025-12-15 Published:2025-12-12

摘要:

大豆需求量在我国呈显著增长趋势,但国内大豆产量难以同步提升,从而引发了产需失衡的问题。为此,我国推广大豆―玉米带状间作模式,旨在优化种植结构,提升产量与效率。但在该模式下,大豆因受荫蔽影响,产生一系列避阴反应,其生长速率、发育进程及产量与品质受到制约。本文从生理和分子层面对大豆荫蔽胁迫响应机制展开综述,详细总结了大豆在荫蔽环境条件下的光合效率、激素调节、基因调控和形态适应等方面的研究进展,为提高荫蔽环境中大豆产量以及培育耐阴高产大豆品种提供理论支撑,同时探讨了未来的研究方向和发展趋势。

关键词: 大豆, 荫蔽胁迫, 避阴反应, 分子机制

Abstract:

Soybean demand is showing significantly growth trend in China, but domestic soybean production is difficult to increase synchronously, which has caused the imbalance between production and demand. Therefore, China has popularized the soybean-corn strip intercropping mode to optimize the planting structure and improve the yield and efficiency. However, in this model, soybean was affected by shading, leading to a series of shading avoidance response that constrain the growth rate, developmental process, yield and quality. In this paper, the response mechanisms of soybean to shading stress are summarized at physiological and molecular levels, and the research progress in photosynthetic efficiency, hormone regulation, gene regulation and morphological adaptation of soybean under shading environment are summarized in detail, in order to provide theoretical supports for improving soybean yield in shading environment and breeding soybean varieties with high yield and shade-tolerance. The future research direction and development trend were discussed.

Key words: Soybean, Shading stress, Shade avoidance syndrome, Molecular mechanism

图1

荫蔽影响大豆生长素相关基因的表达与运输

图2

荫蔽下大豆不同阶段的形态学变化

[1] FAO. World Food and Agriculture. Rome: Food and Agriculture Organization of the United Nations, 2023.
[2] John B. FAO, IFAD, UNICEF, WFP and WHO The state of food security and nutrition in the world 2020. Population and Development Review, 2021, 47(2):558.
doi: 10.1111/padr.v47.2
[3] Gu Q P, Zhou J. The development and revelation of the world soybean industry. Proceedings of International Conference on Industrial Technology and Management Science, 2015, 34:66-69.
[4] 赵志鑫, 傅蒙蒙, 李曙光, 等. 大豆对遮阴胁迫的光合生理和农艺特性响应研究进展. 安徽农业科学, 2023, 51(6):7-10.
[5] 贺佳, 安曈昕, 韩学坤, 等. 间作群体生态生理研究进展. 作物杂志, 2011(4):7-11.
[6] 董书琦, 陈达, 秦巧平, 等. 高等植物叶绿素和类胡萝卜素代谢研究进展. 植物生理学报, 2023, 59(5):793-802.
[7] 吴飞燕, 伊力塔, 李修鹏, 等. 不同光照强度对石栎幼苗叶绿素含量及叶绿素荧光参数的影响. 东北农业大学学报, 2012, 43(4):88-92.
[8] 谢雨霏, 曾维英, 雷怡, 等. 荫蔽对大豆叶片角度及光合特性的影响. 四川农业大学学报, 2024, 42(4):744-751.
[9] 苏小东, 李梅. 绿色植物光系统Ⅰ及其光合作用调控的结构基础. 生物化学与生物物理进展, 2024, 51(10):2298-2310.
[10] Yao X D, Li C H, Li S Y, et al. Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regulation, 2017, 83(3):409-416.
doi: 10.1007/s10725-017-0307-y
[11] 刘沁林. 荫蔽下光强和光质对大豆幼苗形态及光合特性的调控机制. 雅安:四川农业大学, 2018.
[12] 马超, 张均, 宋鹏, 等. 外源海藻糖对PEG渗透胁迫下小麦Rubisco及其活化酶的影响. 西北植物学报, 2019, 39(7):1241-1249.
[13] 柯学, 李军营, 徐超华, 等. 不同光质对烟草叶片组织结构及Rubisco羧化酶活性和rbc、rca基因表达的影响. 植物生理学报, 2012, 48(3):251-259.
[14] 汪直华, 汪扬媚, 陈梦. 不同荫蔽程度及光照恢复对不同大豆品种光合生理的影响. 四川农业大学学报, 2023, 41(5):765-772.
[15] 周艳虹, 黄黎锋, 喻景权. 持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响. 植物生理与分子生物学学报, 2004, 30(2):153-160.
[16] 陈吉玉, 冯铃洋, 高静, 等. 光照强度对苗期大豆叶片气孔特性及光合特性的影响. 中国农业科学, 2019, 52(21):3773-3781.
doi: 10.3864/j.issn.0578-1752.2019.21.006
[17] 程亚娇, 范元芳, 谌俊旭, 等. 光照强度对大豆叶片光合特性及同化物的影响. 作物学报, 2018, 44(12):1867-1874.
doi: 10.3724/SP.J.1006.2018.01867
[18] 李易玲, 陈平, 付智丹, 等. 光信号和光合产物调控豆科植物根瘤形成发育的研究进展. 中国生态农业学报(中英文), 2023, 31(1):21-30.
[19] 张熠. 荫蔽下赤霉素调节大豆茎秆抗倒的生理机制. 雅安:四川农业大学, 2022.
[20] Wu Y S, Gong W Z, Yang W Y. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Scientific Reports, 2017, 7(1):9259.
doi: 10.1038/s41598-017-10026-5 pmid: 28835715
[21] 蒋亨珂, 孙孟园, 黎艳, 等. GA3预处理对野生大豆荫蔽响应的影响. 中国油料作物学报, 2020, 42(3):472-479.
[22] 韩毅强, 石英, 高亚梅, 等. 赤霉素及烯效唑对大豆形态、光合生理及产量的影响. 中国油料作物学报, 2018, 40(6):820-827.
[23] Carl P, Michelle C C, Karin L, et al. Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiology, 2014, 165(3):1285-1301.
doi: 10.1104/pp.114.241844
[24] Pantazopoulou C K, Bongers F J, Küpers J J, et al. Neighbor detection at the leaf tip adaptively regulates upward leaf movement through spatial auxin dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28):7450-7455.
[25] Huff A, Dybing C D. Factors affecting shedding of flowers in soybean (Glycine max (L.) Merrill). Journal of Experimental Botany, 1980, 31(3):751-762.
doi: 10.1093/jxb/31.3.751
[26] Oberholster S D, Peterson C M, Dute R R. Pedicel abscission of soybean: cytological and ultrastructural changes induced by auxin and ethephon. Botany, 1991, 69:2177-2186.
[27] Board J E, Tan Q. Assimilatory capacity effects on soybean yield components and pod number. Crop Science, 1995, 35(3):846-851.
doi: 10.2135/cropsci1995.0011183X003500030035x
[28] 李秀菊, 孟繁静. 大豆花荚败育期间的植物激素变化. 植物学通报, 1999(4):464-467.
[29] 宋莉萍, 刘金辉, 郑殿峰, 等. 不同时期PGRs对大豆花荚脱落率及纤维素酶活性的影响. 中国油料作物学报, 2011, 33 (3):253-258.
[30] Kokubun M. Physiological Mechanisms Regulating Flower Abortion in Soybean. London:Intech Open, 2011.
[31] 傅积海, 章建新, 楚光红, 等. 高产春大豆干物质积累与花荚形成的关系研究. 大豆科学, 2019, 38(2):236-243.
[32] Carlson D R, Dyer D J, Cotterman C D, et al. The physiological basis for cytokinin induced increases in pod set in ix93- 100 soybeans. Plant Physiology, 1987, 84(2):233-239.
doi: 10.1104/pp.84.2.233 pmid: 16665422
[33] Kokubun M, Honda I. Intra-Raceme variation in pod-set probability is associated with cytokinin content in soybeans. Plant Production Science, 2000, 3(4):354-359.
doi: 10.1626/pps.3.354
[34] Heim M A, Jakoby M, Werber M, et al. The basic helix- loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution, 2003, 20(5):735-747.
doi: 10.1093/molbev/msg088
[35] Li K L, Yu R, Fan L M, et al. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nature Communications, 2016, 7(1):11868.
doi: 10.1038/ncomms11868
[36] Favero D S, Kawamura A, Shibata M, et al. AT-Hook transcription factors restrict petiole growth by antagonizing PIFs. Current Biology, 2020, 30(8):1454-1466.
doi: S0960-9822(20)30190-1 pmid: 32197081
[37] Sakuraba Y, Jeong J, Kang M Y, et al. Phytochrome-interacting transcription factors PIF4 and PIF 5 induce leaf senescence in Arabidopsis. Nature Communications, 2014, 5(1):4636.
doi: 10.1038/ncomms5636
[38] Eunkyoo O, Zhu J Y, Wang Z Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 2012, 14(8):802-809.
doi: 10.1038/ncb2545 pmid: 22820378
[39] Franklin K A, Lee S H, Patel D, et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50):20231-20235.
[40] Casson S A, Franklin K A, Gray J E, et al. Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Current Biology, 2009, 153(2):229-234.
[41] Lorrain S, Allen T, Duek P D, et al. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth- promoting bHLH transcription factors. The Plant Journal, 2008, 53(2):312-323.
doi: 10.1111/tpj.2008.53.issue-2
[42] 税照伟. 大豆GmPIFs家族分析及其在避荫反应中的功能研究. 雅安:四川农业大学, 2023.
[43] 帅海威, 孟永杰, 陈锋, 等. 植物荫蔽胁迫的激素信号响应. 植物学报, 2018, 53(1):139-148.
doi: 10.11983/CBB17014
[44] Hornitschek P, Kohnen M V, Lorrain S, et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. The Plant Journal, 2012, 71(5):699-711.
doi: 10.1111/j.1365-313X.2012.05033.x pmid: 22536829
[45] Zhang Y, Mayba O, Pfeiffer A, et al. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression- patterning of shared target genes in Arabidopsis. PLoS Genetics, 2013, 9(1):e1003244.
doi: 10.1371/journal.pgen.1003244
[46] Pucciariello O, Legris M, Costigliolo R C, et al. Rewiring of auxin signaling under persistent shade. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(21):5612-5617.
[47] Zhao Y D. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Molecular Plant, 2012, 5(2):334-338.
doi: 10.1093/mp/ssr104 pmid: 22155950
[48] Zhao Y D, Christensen S K, Fankhauser C, et al. A Role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 2001, 291(5502):306-309.
doi: 10.1126/science.291.5502.306 pmid: 11209081
[49] Chen Y F, Dai X H, Zhao Y D. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & Development, 2006, 20(13):1790-1799.
doi: 10.1101/gad.1415106
[50] Huang X, Zhang Q, Jiang Y P, et al. Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in Arabidopsis. Plant Cell and Environment, 2018, 7(7):e31636.
[51] 陈东亮, 谭玉荣, 张焦平, 等. 大豆荫蔽胁迫响应基因GmYUC2的克隆、自然变异分析及KASP分子标记开发. 广西植物, 2025, 45(7):1205-1215.
[52] Chen L, Huang X X, Zhao S M, et al. IPyA glucosylation mediates light and temperature signaling to regulate auxin- dependent hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(12):6910-6917.
[53] Wisniewska J, Xu J, Seifertová D, et al. Polar PIN localization directs auxin flow in plants. Science, 2006, 312(5775):883.
doi: 10.1126/science.1121356 pmid: 16601151
[54] Kunihiro A, Yamashino T, Nakamichi N, et al. Phytochrome- interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Plant & Cell Physiology, 2011, 52(8):1315-1329.
[55] Keuskamp D H, Pollmann S, Voesenek L A C J, et al. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(52):22740-22744.
[56] Evans J R, Poorter H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant,Cell & Environment, 2001, 24(8):755-767.
doi: 10.1046/j.1365-3040.2001.00724.x
[57] Fernando V, Ülo N. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology,Evolution,and Systematics, 2008, 39:237-257.
doi: 10.1146/ecolsys.2008.39.issue-1
[58] Charlotte M M G, Eric J W V, Kate R S O, et al. Shade tolerance: when growing tall is not an option. Trends in Plant Science, 2013, 18(2):65-71.
doi: 10.1016/j.tplants.2012.09.008 pmid: 23084466
[59] Fraser D P, Hayes S, Franklin K A. Photoreceptor crosstalk in shade avoidance. Current Opinion in Plant Biology, 2016, 33:1-7.
doi: S1369-5266(16)30035-8 pmid: 27060719
[60] 周蓉, 陈海峰, 王贤智, 等. 大豆幼苗根系性状的QTL分析. 作物学报, 2011, 37(7):1151-1158.
[61] 宋伊琳. 大豆幼苗下胚轴伸长能力的关联分析. 哈尔滨:黑龙江大学, 2023.
[62] 罗晓峰, 孟永杰, 刘卫国, 等. 大豆响应荫蔽胁迫的形态及生理机制研究. 分子植物育种, 2018, 16(3):979-988.
[63] Gong W Z, Jiang C D, Wu Y S, et al. Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica, 2015, 53(2):259-268.
doi: 10.1007/s11099-015-0103-8
[64] Zhou Y, Huang L H, Wei X L, et al. Physiological, morphological, and anatomical changes in Rhododendron agastum in response to shading. Plant Growth Regulation, 2017, 81(1):23-30.
doi: 10.1007/s10725-016-0181-z
[65] Casal J J. Shade avoidance. The Arabidopsis Book, 2012, 10:157.
[66] Fan Y F, Chen J X, Wang Z L, et al. Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis. BMC Plant Biology, 2019, 19(1):34.
doi: 10.1186/s12870-019-1633-1
[67] 刘凡值, 兴红, 傅生华, 等. 大豆耐阴性的研究Ⅴ——大豆叶片形态特征及解剖结构与耐阴性的关系. 贵州农业科学, 1990 (3):9-16.
[68] 范元芳, 杨峰, 刘沁林, 等. 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响. 作物学报, 2017, 43(2):277-285.
[69] 范元芳, 杨峰, 何知舟, 等. 套作大豆形态、光合特征对玉米荫蔽及光照恢复的响应. 中国生态农业学报, 2016, 24(5):608-617.
[70] Marcotrigiano M. A role for leaf epidermis in the control of leaf size and the rate and extent of mesophyll cell division. American Journal of Botany, 2010, 97(2):224-233.
doi: 10.3732/ajb.0900102 pmid: 21622382
[71] 宋丽清, 胡春梅, 侯喜林, 等. 高粱、紫苏叶脉密度与光合特性的关系. 植物学报, 2015, 50(1):100-106.
[72] 张亚, 杨石建, 孙梅, 等. 基部被子植物气孔性状与叶脉密度的关联进化. 植物科学学报, 2014, 32(4):320-328.
[73] 段贝贝, 赵成章, 徐婷, 等. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析. 植物生态学报, 2016, 40(12):1289-1297.
doi: 10.17521/cjpe.2016.0215
[74] 李盛蓝, 谭婷婷, 范元芳, 等. 玉米荫蔽对大豆光合特性与叶脉、气孔特征的影响. 中国农业科学, 2019, 52(21):3782-3793.
doi: 10.3864/j.issn.0578-1752.2019.21.007
[75] 武晓玲, 谭千军, 陈钒杰, 等. 大豆苗期茎秆相关性状对荫蔽的响应. 植物遗传资源学报, 2015, 16(5):1111-1116.
doi: 10.13430/j.cnki.jpgr.2015.05.026
[76] 任胜茂, 邓榆川, 文凤君, 等. 套作对大豆苗期茎秆纤维素合成相关糖类物质转化的影响及其与叶片光合的关系. 中国农业科学, 2018, 51(7):1272-1282.
doi: 10.3864/j.issn.0578-1752.2018.07.005
[77] Liu W G, Zou J L, Zhang J, et al. Evaluation of soybean (Glycine max) stem vining in maize-soybean relay strip intercropping system. Plant Production Science, 2014, 18(1):69-75.
doi: 10.1626/pps.18.69
[78] 任胜茂, 邓榆川, 文凤君, 等. 套作对大豆苗期碳氮物质代谢的影响及其与抗倒伏性的关系. 草业学报, 2018, 27(9):85-94.
doi: 10.11686/cyxb2017455
[79] 王竹, 杨文钰, 伍晓燕, 等. 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008, 19(2):323-329.
[80] 于晓波, 罗玲, 曾宪堂, 等. 套作弱光胁迫对大豆苗期根系形态和生理活性的影响. 中国油料作物学报, 2015, 37(2):185-193.
doi: 10.7505/j.issn.1007-9084.2015.02.010
[81] 刘婷, 刘卫国, 任梦露, 等. 遮荫程度对不同耐荫性大豆品种光合及抗倒程度的影响. 中国农业科学, 2016, 49(8):1466-1475.
doi: 10.3864/j.issn.0578-1752.2016.08.004
[82] 邹俊林, 刘卫国, 袁晋, 等. 套作大豆苗期茎秆木质素合成与抗倒性的关系. 作物学报, 2015, 41(7):1098-1104.
[83] Liu B, Qu N. Effects of shading on spatial distribution of flower and flower abscission in field-grown three soybeans in Northern China. Emirates Journal of Food and Agriculture, 2015, 27:629-635.
doi: 10.9755/ejfa.
[84] 蒋利, 雍太文, 张群, 等. 种植模式和施氮水平对大豆花荚脱落及产量的影响. 大豆科学, 2015, 34(5):843-849.
[85] Wu Y S, Gong W Z, Wang Y M, et al. Shading of mature leaves systemically regulates photosynthesis and leaf area of new developing leaves via hormones. Photosynthetica, 2019, 57(1):303-310.
doi: 10.32615/ps.2019.021
[86] 王欢, 孙霞, 岳岩磊, 等. 东北春大豆花荚脱落性状与SSR标记的关联分析. 土壤与作物, 2014, 3(1):32-40.
[87] Liu B, Liu X B, Wang C, et al. Soybean yield and yield component distribution across the main axis in response to light enrichment and shading under different densities. Plant,Soil and Environment, 2010, 56(8):384-392.
doi: 10.17221/189/2009-PSE
[88] Liu B, Li Y S, Liu X B, et al. Lower total soluble sugars in vegetative parts of soybean plants are responsible for reduced pod number under shading conditions. Australian Journal of Crop Science, 2011, 5(13):1852-1857.
[89] Rubiales D, Fondevilla S, Chen W D, et al. Achievements and challenges in legume breeding for pest and disease resistance. Critical Reviews in Plant Sciences, 2015, 34(1/2/3):195-236.
doi: 10.1080/07352689.2014.898445
[90] Jin K, Tohru K. Shading and thinning effects on seed and shoot dry matter increase in determinate soybean during the seed-filling period. Agronomy Journal, 2004, 96(2):398-405.
doi: 10.2134/agronj2004.3980
[91] 张琳, 王修蘋, 李祖然, 等. 植物响应UV-B辐射的表观遗传调控和胁迫记忆研究进展. 植物生理学报, 2023, 59(7):1195-1210.
[92] 赵丝雨, 王思宇, 王文艳, 等. 低温和荫蔽双重胁迫对大豆光合特性的影响. 西南大学学报(自然科学版), 2024, 46(8):22-30.
[93] Jiang H K, Shui Z W, Xu L, et al. Gibberellins modulate shade- induced soybean hypocotyl elongation downstream of the mutual promotion of auxin and brassinosteroids. Plant Physiology and Biochemistry, 2020, 150:209-221.
doi: 10.1016/j.plaphy.2020.02.042
[94] Lyu X G, Chen Q C, Qin C, et al. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Molecular Plant, 2021, 14(2):298-314.
doi: 10.1016/j.molp.2020.11.016
[95] Su Y Z, Hao X S, Zeng W Y, et al. Genome-wide association with transcriptomics reveals a shade-tolerance gene network in soybean. The Crop Journal, 2024, 12(1):232-243.
doi: 10.1016/j.cj.2023.11.013
[96] Tian Z X, Nepomuceno A L, Song Q X, et al. Soybean 2035: a decadal vision for soybean functional genomics and breeding. Molecular Plant, 2025, 18(2):245-271.
doi: 10.1016/j.molp.2025.01.004
[1] 秦娜娜, 黄淋华, 陈莹, 王胜谋, 谢勇, 缪凯, 李万明, 戚兰. 叶面喷施丙酰芸苔素内酯对夏大豆光合作用、农艺性状和产量的影响[J]. 作物杂志, 2025, (6): 164–171
[2] 侯晓敏, 申惠波, 董守坤, 闫锋, 董扬, 赵富阳, 李清泉, 左月桃. 甲哌鎓缓解大豆幼苗叶片干旱胁迫的生理效应[J]. 作物杂志, 2025, (3): 133–140
[3] 梁辉, 章建新, 薛丽华, 贾珂珂. 水氮后移条件下滴灌量对新农豆2号根系生长及产量的影响[J]. 作物杂志, 2025, (3): 233–240
[4] 任永福, 李嘉怡, 陈国鹏, 蒲甜, 陈虹, 王小春. 不同栽培管理模式对带状套作玉米产量与效率的影响[J]. 作物杂志, 2025, (2): 101–108
[5] 杨如萍, 贾贞, 韦瑛, 魏野畴, 王立明, 陈光荣, 张国宏, 宋雯雯. 甘肃不同地理来源大豆品种生育期性状与气象因子及农艺性状的关系[J]. 作物杂志, 2025, (1): 123–132
[6] 李多, 王晨, 张明聪, 曹亮, 金喜军, 张玉先, 王孟雪. 大豆苗期水分亏缺对土壤酶活性及微生物多样性的影响[J]. 作物杂志, 2024, (2): 148–157
[7] 裴春玲, 谷勇哲, 付佳祺, 晁守伟, 卢倩, 邱丽娟. 黄淮海夏大豆在海南快速加代技术研究[J]. 作物杂志, 2023, (6): 35–40
[8] 任洪雷, 张丰屹, 韩新春, 洪慧龙, 朱筱, 王广金, 邱丽娟. 大豆微核心种质资源抗旱性评价[J]. 作物杂志, 2023, (6): 94–100
[9] 常世豪, 耿臻, 杨青春, 舒文涛, 李金花, 李琼, 张保亮, 张东辉. 基于BLUP值的夏大豆产量与农艺性状的相关分析[J]. 作物杂志, 2023, (5): 10–15
[10] 韩德志, 刘显元, 王舒, 蔡鑫鑫, 魏然, 贾鸿昌, 闫晓飞, 吴俊彦. 黑龙江北部救灾大豆品种评价及筛选[J]. 作物杂志, 2023, (5): 16–23
[11] 潘文婧, 孙亚男, 高陆思, 曲梦楠, 张维耀, 付春旭, 姜世波, 姜成喜, 付亚书, 王金星. 中国和欧洲大豆资源农艺性状综合性评价[J]. 作物杂志, 2023, (4): 91–97
[12] 赵晶云, 吕新云, 刘小荣, 任海红, 任小俊, 马俊奎. 幼龄核桃林下带状复合间作对大豆生长及产量的影响[J]. 作物杂志, 2023, (1): 136–142
[13] 齐广勋, 董岭超, 张伟, 袁翠平, 刘晓冬, 王英男, 董英山, 王玉民, 赵洪锟. 国外大豆种质资源对大豆花叶病毒株系3(SMV3)的抗性评价[J]. 作物杂志, 2022, (6): 70–74
[14] 唐江华, 杜孝敬, 徐文修, 苏丽丽, 房彦飞, 许潮, 安崇霄. 秸秆全量还田下土壤氮素特征对耕作措施的响应[J]. 作物杂志, 2022, (5): 135–140
[15] 孙庆圣, 原程, 张玉先. 减施氮肥和接种根瘤菌对黑大豆光合特性及产量的影响[J]. 作物杂志, 2022, (4): 132–137
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!